SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Irani C) srt2:(2020-2021);lar1:(su)"

Sökning: WFRF:(Irani C) > (2020-2021) > Stockholms universitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nicholl, M., et al. (författare)
  • An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:1, s. 482-504
  • Tidskriftsartikel (refereegranskat)abstract
    • At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass approximate to 10(6) M-circle dot, disrupting a star of approximate to 1 M-circle dot. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L proportional to t(2), consistent with a photosphere expanding at constant velocity (greater than or similar to 2000 km s(-1)), and a line-forming region producing initially blueshifted H and He II profiles with v = 3000-10 000 km s(-1). The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission - the first time this connection has been observed in a TDE. The light-curve rise begins 29 +/- 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at approximate to 10(41) erg s(-1). Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.
  •  
2.
  • Miller, A. A., et al. (författare)
  • The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia ( mag at peak) yet featured very high absorption velocities ( km s−1 for Si ii λ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure ) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca ii] emission, if it was a double detonation, or narrow [O i] emission, if it was due to a violent merger.
  •  
3.
  • Strotjohann, Nora L., et al. (författare)
  • Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 907:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction-powered supernovae (SNe) explode within an optically thick circumstellar medium (CSM) that could be ejected during eruptive events. To identify and characterize such pre-explosion outbursts, we produce forced-photometry light curves for 196 interacting SNe, mostly of Type IIn, detected by the Zwicky Transient Facility between early 2018 and 2020 June. Extensive tests demonstrate that we only expect a few false detections among the 70,000 analyzed pre-explosion images after applying quality cuts and bias corrections. We detect precursor eruptions prior to 18 Type IIn SNe and prior to the Type Ibn SN 2019uo. Precursors become brighter and more frequent in the last months before the SN and month-long outbursts brighter than magnitude -13 occur prior to 25% (5-69%, 95% confidence range) of all Type IIn SNe within the final three months before the explosion. With radiative energies of up to 10(49) erg, precursors could eject similar to 1 M of material. Nevertheless, SNe with detected precursors are not significantly more luminous than other SNe IIn, and the characteristic narrow hydrogen lines in their spectra typically originate from earlier, undetected mass-loss events. The long precursor durations require ongoing energy injection, and they could, for example, be powered by interaction or by a continuum-driven wind. Instabilities during the neon- and oxygen-burning phases are predicted to launch precursors in the final years to months before the explosion; however, the brightest precursor is 100 times more energetic than anticipated.
  •  
4.
  • Bruch, Rachel J., et al. (författare)
  • A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectroscopic detection of narrow emission lines traces the presence of circumstellar mass distributions around massive stars exploding as core-collapse supernovae. Transient emission lines disappearing shortly after the supernova explosion suggest that the material spatial extent is compact and implies an increased mass loss shortly prior to explosion. Here, we present a systematic survey for such transient emission lines (Flash Spectroscopy) among Type II supernovae detected in the first year of the Zwicky Transient Facility survey. We find that at least six out of ten events for which a spectrum was obtained within two days of the estimated explosion time show evidence for such transient flash lines. Our measured flash event fraction (>30% at 95% confidence level) indicates that elevated mass loss is a common process occurring in massive stars that are about to explode as supernovae.
  •  
5.
  • De, Kishalay, et al. (författare)
  • The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100 '' of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > -17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to greater than or similar to 15% +/- 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Ia-like features (Ca-Ia objects) to those with SN Ib/c-like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g - r approximate to 1.5 mag) or green (g - r approximate to 0.5 mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca II]/[O I] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations.
  •  
6.
  • Perley, Daniel A., et al. (författare)
  • The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a public catalog of transients from the Zwicky Transient Facility (ZTF) Bright Transient Survey, a magnitude-limited (m g or r filter) survey for extragalactic transients in the ZTF public stream. We introduce cuts on survey coverage, sky visibility around peak light, and other properties unconnected to the nature of the transient, and show that the resulting statistical sample is spectroscopically 97% complete at <18 mag, 93% complete at <18.5 mag, and 75% complete at <19 mag. We summarize the fundamental properties of this population, identifying distinct duration-luminosity correlations in a variety of supernova (SN) classes and associating the majority of fast optical transients with well-established spectroscopic SN types (primarily SN Ibn and II/IIb). We measure the Type Ia SN and core-collapse (CC) SN rates and luminosity functions, which show good consistency with recent work. About 7% of CC SNe explode in very low-luminosity galaxies (M-i > -16 mag), 10% in red-sequence galaxies, and 1% in massive ellipticals. We find no significant difference in the luminosity or color distributions between the host galaxies of SNe Type II and SNe Type Ib/c, suggesting that line-driven wind stripping does not play a major role in the loss of the hydrogen envelope from their progenitors. Future large-scale classification efforts with ZTF and other wide-area surveys will provide high-quality measurements of the rates, properties, and environments of all known types of optical transients and limits on the existence of theoretically predicted but as yet unobserved explosions.
  •  
7.
  • Soumagnac, Maayane T., et al. (författare)
  • SN 2018fif : The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-cadence transient surveys are able to capture supernovae closer to their first light than ever before. Applying analytical models to such early emission, we can constrain the progenitor stars' properties. In this paper, we present observations of SN 2018fif (ZTF 18abokyfk). The supernova was discovered close to first light and monitored by the Zwicky Transient Facility (ZTF) and the Neil Gehrels Swift Observatory. Early spectroscopic observations suggest that the progenitor of SN 2018fif was surrounded by relatively small amounts of circumstellar material compared to all previous cases. This particularity, coupled with the high-cadence multiple-band coverage, makes it a good candidate to investigate using shock-cooling models. We employ the SOPRANOS code, an implementation of the model by Sapir & Waxman and its extension to early times by Morag et al. Compared with previous implementations, SOPRANOS has the advantage of including a careful account of the limited temporal validity domain of the shock-cooling model as well as allowing usage of the entirety of the early UV data. We find that the progenitor of SN 2018fif was a large red supergiant with a radius of R = 744.0(-128.0)(+183.0) R-circle dot and an ejected mass of M-ej = 9.3(-5.8)(+0.4) M-circle dot. Our model also gives information on the explosion epoch, the progenitor's inner structure, the shock velocity, and the extinction. The distribution of radii is double-peaked, with smaller radii corresponding to lower values of the extinction, earlier recombination times, and a better match to the early UV data. If these correlations persist in future objects, denser spectroscopic monitoring constraining the time of recombination, as well as accurate UV observations (e.g., with ULTRASAT), will help break the extinction/radius degeneracy and independently determine both.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy