SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isaak K.) "

Sökning: WFRF:(Isaak K.)

  • Resultat 1-10 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Griffin, M. J., et al. (författare)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
2.
  • Alqasim, A., et al. (författare)
  • TOI−757 b: an eccentric transiting mini−Neptune on a 17.5−d orbit
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 533:1, s. 1-26
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the spectroscopic confirmation and fundamental properties of TOI−757 b, a mini−Neptune on a 17.5−d orbit transiting a bright star (V = 9.7 mag) discovered by the TESS mission. We acquired high−precision radial velocity measurements with the HARPS, ESPRESSO, and PFS spectrographs to confirm the planet detection and determine its mass. We also acquired space−borne transit photometry with the CHEOPS space telescope to place stronger constraints on the planet radius, supported with ground−based LCOGT photometry. WASP and KELT photometry were used to help constrain the stellar rotation period. We also determined the fundamental parameters of the host star. We find that TOI−757 b has a radius of Rp = 2.5 ± 0.1R. and a mass of Mp = 10.5+−2212M, implying a bulk density of ρp = 3.6 ± 0.8 g cm−3. Our internal composition modelling was unable to constrain the composition of TOI−757 b, highlighting the importance of atmospheric observations for the system. We also find the planet to be highly eccentric with e = 0.39+−000708, making it one of the very few highly eccentric planets among precisely characterized mini−Neptunes. Based on comparisons to other similar eccentric systems, we find a likely scenario for TOI−757 b’s formation to be high eccentricity migration due to a distant outer companion. We additionally propose the possibility of a more intrinsic explanation for the high eccentricity due to star−star interactions during the earlier epoch of the Galactic disc formation, given the low metallicity and older age of TOI−757.
  •  
3.
  • Ballan, M., et al. (författare)
  • Nuclear physics midterm plan at Legnaro National Laboratories (LNL)
  • 2023
  • Ingår i: European Physical Journal Plus. - 2190-5444. ; 138:8, s. 3-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The next years will see the completion of the radioactive ion beam facility SPES (Selective Production of Exotic Species) and the upgrade of the accelerators complex at Istituto Nazionale di Fisica Nucleare – Legnaro National Laboratories (LNL) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics, and applications. The nuclear physics community has organised a workshop to discuss the new physics opportunities that will be possible in the near future by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report.
  •  
4.
  •  
5.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
6.
  • Serrano, L. M., et al. (författare)
  • The HD 93963 A transiting system: A 1.04d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M-* = 1.109 +/- 0.043M(circle dot), R-* = 1.043 +/- 0.009 R-circle dot) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, 'Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of P-c approximate to 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of M-c = 19.2 +/- 4.1 M-circle plus and a radius of R-c = 3.228 +/- 0.059 R-circle plus, implying a mean density of rho(c) = 3.1 +/- 0.7 g cm(-3). The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio approximate to 6.7, TESS + CHEOPS combined transit depth D-b = 141.5(-8.3)(+8.5) ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (R-b = 1.35 +/- 0.042 R-circle plus) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (M-b = 7.8 +/- 3.2 M-circle plus). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets.
  •  
7.
  • Billot, N., et al. (författare)
  • In-situ observations of resident space objects with the CHEOPS space telescope
  • 2024
  • Ingår i: Journal of Space Safety Engineering. - 2468-8975 .- 2468-8967. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • The CHaracterising ExOPlanet Satellite (CHEOPS) is a partnership between the European Space Agency and Switzerland with important contributions by 10 additional ESA member States. It is the first S-class mission in the ESA Science Programme. CHEOPS has been flying on a Sun-synchronous low Earth orbit since December 2019, collecting millions of short-exposure images in the visible domain to study exoplanet properties. A small yet increasing fraction of CHEOPS images show linear trails caused by resident space objects crossing the instrument field of view. CHEOPS’ orbit is indeed particularly favourable to serendipitously detect objects in its vicinity as the spacecraft rarely enters the Earth's shadow, sits at an altitude of 700 km, and observes with moderate phase angles relative to the Sun. This observing configuration is quite powerful, and it is complementary to optical observations from the ground. To characterize the population of satellites and orbital debris observed by CHEOPS, all and every science images acquired over the past 3 years have been scanned with a Hough transform algorithm to identify the characteristic linear features that these objects cause on the images. Thousands of trails have been detected. This statistically significant sample shows interesting trends and features such as an increased occurrence rate over the past years as well as the fingerprint of the Starlink constellation. The cross-matching of individual trails with catalogued objects is underway as we aim to measure their distance at the time of observation and deduce the apparent magnitude of the detected objects. As space agencies and private companies are developing new space-based surveillance and tracking activities to catalogue and characterize the distribution of small debris, the CHEOPS experience is timely and relevant. With the first CHEOPS mission extension currently running until the end of 2026, and a possible second extension until the end of 2029, the longer time coverage will make our dataset even more valuable to the community, especially for characterizing objects with recurrent crossings.
  •  
8.
  • Bonfanti, A., et al. (författare)
  • Characterising TOI-732 b and c: New insights into the M-dwarf radius and density valley ★,★★
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • TOI-732 is an M dwarf hosting two transiting planets that are located on the two opposite sides of the radius valley. Inferring a reliable demographics for this type of systems is key to understanding their formation and evolution mechanisms. Aims. By doubling the number of available space-based observations and increasing the number of radial velocity (RV) measurements, we aim at refining the parameters of TOI-732 b and c. We also use the results to study the slope of the radius valley and the density valley for a well-characterised sample of M-dwarf exoplanets. Methods. We performed a global Markov chain Monte Carlo analysis by jointly modelling ground-based light curves and CHEOPS and TESS observations, along with RV time series both taken from the literature and obtained with the MAROON-X spectrograph. The slopes of the M-dwarf valleys were quantified via a support vector machine (SVM) procedure. Results. TOI-732 b is an ultrashort-period planet (P = 0.76837931−+000000004200000039 days) with a radius Rb = 1.325+−00057058 R☉, a mass Mb = 2.46 ± 0.19 M☉, and thus a mean density ρb = 5.8+−1008 g cm−3, while the outer planet at P = 12.252284 ± 0.000013 days has Rc = 2.39+−001011 R☉, Mc = 8.04+−005048 M☉, and thus ρc = 3.24+−005543 g cm−3. Even with respect to the most recently reported values, this work yields uncertainties on the transit depths and on the RV semi-amplitudes that are smaller up to a factor of ∼1.6 and ∼2.4 for TOI-732 b and c, respectively. Our calculations for the interior structure and the location of the planets in the mass-radius diagram lead us to classify TOI-732 b as a super-Earth and TOI-732 c as a mini-Neptune. Following the SVM approach, we quantified d log Rp,valley/d log P = −0.065+−00024013, which is flatter than for Sun-like stars. In line with former analyses, we note that the radius valley for M-dwarf planets is more densely populated, and we further quantify the slope of the density valley as d log ρ̂valley/d log P = −0.02+−001204. Conclusions. Compared to FGK stars, the weaker dependence of the position of the radius valley on the orbital period might indicate that the formation shapes the radius valley around M dwarfs more strongly than the evolution mechanisms.
  •  
9.
  • Egger, J. A., et al. (författare)
  • Unveiling the internal structure and formation history of the three planets transiting HIP 29442 (TOI-469) with CHEOPS
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 688
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiplanetary systems spanning the radius valley are ideal testing grounds for exploring the different proposed explanations for the observed bimodality in the radius distribution of close-in exoplanets. One such system is HIP 29442 (TOI-469), an evolved K0V star hosting two super-Earths and one sub-Neptune. We observed HIP 29442 with CHEOPS for a total of 9.6 days, which we modelled jointly with two sectors of TESS data to derive planetary radii of 3.410 ± 0.046, 1.551 ± 0.045, and 1.538 ± 0.049 R? for planets b, c, and d, which orbit HIP 29442 with periods of 13.6, 3.5, and 6.4 days, respectively. For planet d this value deviates by more than 3s from the median value reported in the discovery paper, leading us to conclude that caution is required when using TESS photometry to determine the radii of small planets with low per-transit signal-to-noise ratios and large gaps between observations. Given the high precision of these new radii, combining them with published RVs from ESPRESSO and HIRES provides us with ideal conditions to investigate the internal structure and formation pathways of the planets in the system. We introduced the publicly available code plaNETic, a fast and robust neural network-based Bayesian internal structure modelling framework. We then applied hydrodynamic models to explore the upper atmospheric properties of these inferred structures. Finally, we identified planetary system analogues in a synthetic population generated with the Bern model for planet formation and evolution. Based on this analysis, we find that the planets likely formed on opposing sides of the water iceline from a protoplanetary disk with an intermediate solid mass. We finally report that the observed parameters of the HIP 29442 system are compatible with a scenario where the second peak in the bimodal radius distribution corresponds to sub-Neptunes with a pure H/He envelope and with a scenario with water-rich sub-Neptunes.
  •  
10.
  • Ehrenreich, D., et al. (författare)
  • A full transit of v 2 Lupi d and the search for an exomoon in its Hill sphere with CHEOPS
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • The planetary system around the naked-eye star v2 Lupi (HD 136352; TOI-2011) is composed of three exoplanets with masses of 4.7, 11.2, and 8.6 Earth masses (M⊕). The TESS and CHEOPS missions revealed that all three planets are transiting and have radii straddling the radius gap separating volatile-rich and volatile-poor super-earths. Only a partial transit of planet d had been covered so we re-observed an inferior conjunction of the long-period 8.6 M⊕ exoplanet v2 Lup d with the CHEOPS space telescope. We confirmed its transiting nature by covering its whole 9.1 h transit for the first time. We refined the planet transit ephemeris to P = 107.13610.0022+0.0019 days and Tc = 2459009.77590.0096+0.0101 BJDTDB, improving by ~40 times on the previously reported transit timing uncertainty. This refined ephemeris will enable further follow-up of this outstanding long-period transiting planet to search for atmospheric signatures or explore the planet s Hill sphere in search for an exomoon. In fact, the CHEOPS observations also cover the transit of a large fraction of the planet s Hill sphere, which is as large as the Earth s, opening the tantalising possibility of catching transiting exomoons. We conducted a search for exomoon signals in this single-epoch light curve but found no conclusive photometric signature of additional transiting bodies larger than Mars. Yet, only a sustained follow-up of v2 Lup d transits will warrant a comprehensive search for a moon around this outstanding exoplanet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy