SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isaxon Christina) "

Sökning: WFRF:(Isaxon Christina)

  • Resultat 1-10 av 75
  • [1]234567...8Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dierschke, K., et al. (författare)
  • Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates
  • 2017
  • Ingår i: International Archives of Occupational and Environmental Health. - : Springer. - 0340-0131 .- 1432-1246. ; 90:5, s. 451-463
  • Tidskriftsartikel (refereegranskat)abstract
    • Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders' airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day. In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m(3)) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure. No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms. Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust).
  •  
2.
  • Hagerman, Inger, et al. (författare)
  • Effects on heart rate variability by artificially generated indoor nano-sized particles in a chamber study
  • 2014
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310. ; 88, s. 165-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Airborne particles are associated with increased morbidity and mortality due to respiratory and cardiovascular diseases in polluted areas. There is a growing interest in nano-sized particles with diameter < 100 nm and their potential health effects. Heart rate variability (HRV) is a noninvasive method for cardiovascular risk prediction in high prevalent groups. Aim of study: The aim was to evaluate the impact of nano-sized indoor air particles on HRV for healthy and adult females. Methods: All exposures were performed as controlled chamber experiments with particle exposure from burning candles, terpene + ozone reactions or filtered air in a double-blind cross over design. Twenty-two healthy females were investigated during 10 min periods at different exposures and the reactivity in high frequency (HF) spectral band of HRV were computed. Results: Heart rate was unchanged from baseline values in all groups during all experimental settings. HF power of HRV tended to increase during exposure to particles from burning candle while particles from terpene + ozone reactions tended to decrease HF power. Conclusions: Exposure to nano-sized particles of burning candles or terpene + ozone reactions results in different patterns of heart rate variability, with signs of altered autonomic cardiovascular control. Practical implications: This study indicates that the HRV method may be used for information on physiological responses of exposure to different nano-sized particles and contribute to the understanding of mechanisms behind health effects of particle exposures. (C) 2014 The Authors. Published by Elsevier Ltd.
  •  
3.
  • Isaxon, Christina, et al. (författare)
  • A Novel System for Source Characterization and Controlled Human Exposure to Nanoparticle Aggregates Generated During Gas–Metal Arc Welding
  • 2013
  • Ingår i: Aerosol Science and Technology. - : Taylor & Francis. - 1521-7388 .- 0278-6826. ; 47:1, s. 52-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in Undetermined The aim of this study was to achieve a method to perform detailed characterization and human exposure studies of nanosized and nanostructured aerosol particles. The source chosen was mild steel, active gas, arc welding fume. The setup consisted of a generation chamber, where welding can be performed, connected to an airtight stainless steel 22 m(3) exposure chamber. Instrumentation, consisting of a tapered element oscillating microbalance, a scanning mobility particle sizer, and a sampler for electron microscopy and particle-induced X-ray emission analysis was connected to the stainless steel chamber. The feasibility of the system for human exposure studies was evaluated by exposing 31 human volunteers, in groups of three, to a test aerosol containing 1 mg/m(3) welding fumes and to conditioned, filtered air. The results show that an aerosol that accurately represents dilute welding fume exposures that occur in workplaces can be produced in a controlled manner, and that the experimental setup can be used for 6 h, double-blind, exposures of human subjects. Particle mass concentration levels could be varied from <5 mu g/m(3) to more than 1000 mu g/m(3). Fumes from metal active gas welding showed a unimodal size distribution with a mean mobility diameter of 160 nm, transmission electron microscopy showed aggregates with a clearly nanosized structure.
  •  
4.
  • Isaxon, Christina, et al. (författare)
  • Contribution of indoor-generated particles to residential exposure
  • 2015
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 106, s. 458-466
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The majority of airborne particles in residences, when expressed as number concentrations, are generated by the residents themselves, through combustion/thermal related activities. These particles have a considerably smaller diameter than 2.5 μm and, due to the combination of their small size, chemical composition (e.g. soot) and intermittently very high concentrations, should be regarded as having potential to cause adverse health effects. In this study, time resolved airborne particle measurements were conducted for seven consecutive days in 22 randomly selected homes in the urban area of Lund in southern Sweden. The main purpose of the study was to analyze the influence of human activities on the concentration of particles in indoor air. Focus was on number concentrations of particles with diameters <300 nm generated by indoor activities, and how these contribute to the integrated daily residential exposure. Correlations between these particles and soot mass concentration in total dust were also investigated. It was found that candle burning and activities related to cooking (using a frying pan, oven, toaster, and their combinations) were the major particle sources. The frequency of occurrence of a given concentration indoors and outdoors was compared for ultrafine particles. Indoor data was sorted into non-occupancy and occupancy time, and the occupancy time was further divided into non-activity and activity influenced time. It was found that high levels (above 104 cmâ3) indoors mainly occur during active periods of occupancy, while the concentration during non-activity influenced time differs very little from non-occupancy time. Total integrated daily residential exposure of ultrafine particles was calculated for 22 homes, the contribution from known activities was 66%, from unknown activities 20%, and from background/non-activity 14%. The collected data also allowed for estimates of particle source strengths for specific activities, and for some activities it was possible to estimate correlations between the number concentration of ultrafine particles and the mass concentration of soot in total dust in 10 homes. Particle source strengths (for 7 specific activities) ranged from 1.6·1012 to 4.5·1012 minâ1. The correlation between ultrafine particles and mass concentration of soot in total dust varied between 0.37 and 0.85, with an average of 0.56 (Pearson correlation coefficient). This study clearly shows that due to the importance of indoor sources, residential exposure to ultrafine particles cannot be characterized by ambient measurements alone.
  •  
5.
  • Isaxon, Christina, et al. (författare)
  • Realistic indoor nano-aerosols for a human exposure facility
  • 2013
  • Ingår i: Journal of Aerosol Science. - : Elsevier. - 0021-8502. ; 60, s. 55-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to achieve realistic levels of two different types of aerosols commonly abundant in indoor environments in an experimental chamber intended for human exposure studies and aerosol characterization. The aerosols chosen were particles from candle lights (in particle number dominated by inorganic water soluble particles) and from ozone-terpene reactions (organic particles). The aerosol generation and characterization system consisted of a controlled air tight stainless steel 22 m(3) chamber, to which the generation set-ups were connected. No air could enter or leave the chamber except through a conditioning system by which temperature, relative humidity and air exchange rate could be controlled. Candle smoke aerosol was generated from ten candles burning in a 1.33 m(3) glass and stainless steel chamber. The aerosol was diluted by clean air from the conditioning system before entering the chamber. Terpene vapor was generated by passing pure nitrogen through a glass bottle containing limonene oil. Ozone was generated by a spark discharge using pure O-2, and was added to the ventilation air flow downstream the inlet for terpene vapors and upstream the inlet to the chamber. Both aerosols were characterized with respect to number and mass concentrations, size distribution and chemical composition. Particle number concentration in the size range 10-650 nm could be varied from <10 cm(-3) to more than 900,000 cm(-3) (for candle smoke) or to more than 30,000 cm(-3) (for particles formed in a 160 ppb terpene/40 ppb ozone mixture). Furthermore, the set-ups were evaluated by, for each source, repeating the generation at six three-hour long events. For both aerosols repeatable generations at pre-determined concentration levels, that were stable over time, could be achieved. The results show that realistic concentrations of aerosols from real-world environments could be reproduced in a well-controlled manner and that this set-up could be used both for aerosol characterization and for human exposures. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
6.
  • Abera, Asmamaw, et al. (författare)
  • Air pollution measurements and land-use regression in urban sub-saharan Africa using low-cost sensors—possibilities and pitfalls
  • 2020
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution is recognized as the most important environmental factor that adversely affects human and societal wellbeing. Due to rapid urbanization, air pollution levels are increasing in the Sub-Saharan region, but there is a shortage of air pollution monitoring. Hence, exposure data to use as a base for exposure modelling and health effect assessments is also lacking. In this study, low-cost sensors were used to assess PM2.5 (particulate matter) levels in the city of Adama, Ethiopia. The measurements were conducted during two separate 1-week periods. The measurements were used to develop a land-use regression (LUR) model. The developed LUR model explained 33.4% of the variance in the concentrations of PM2.5. Two predictor variables were included in the final model, of which both were related to emissions from traffic sources. Some concern regarding influential observations remained in the final model. Long-term PM2.5 and wind direction data were obtained from the city’s meteorological station, which should be used to validate the representativeness of our sensor measurements. The PM2.5 long-term data were however not reliable. Means of obtaining good reference data combined with longer sensor measurements would be a good way forward to develop a stronger LUR model which, together with improved knowledge, can be applied towards improving the quality of health. A health impact assessment, based on the mean level of PM2.5 (23 µg/m3), presented the attributable burden of disease and showed the importance of addressing causes of these high ambient levels in the area.
  •  
7.
  • Ahlberg, Erik, et al. (författare)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • Ingår i: Dagens nyheter (DN debatt). - 1101-2447.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  •  
8.
  • Ali, Neserin, et al. (författare)
  • Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
  • Ingår i: Clinical Proteomics. - : Humana Press. - 1542-6416 .- 1559-0275. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. Methods: In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. Results: The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. Conclusion: Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
  •  
9.
  • Alsved, Malin, et al. (författare)
  • Sources of Airborne Norovirus in Hospital Outbreaks
  • Ingår i: Clinical Infectious Diseases. - : Oxford University Press. - 1537-6591. ; 70:10, s. 2023-2028
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Noroviruses are the major cause of viral gastroenteritis. Disease transmission is difficult to prevent and outbreaks in healthcare facilities commonly occur. Contact with infected persons and contaminated environments are believed to be the main routes of transmission. However, noroviruses have recently been found in aerosols and airborne transmission has been suggested. The aim of our study was to investigate associations between symptoms of gastroenteritis and presence of airborne norovirus, and to investigate the size of norovirus carrying particles.METHODS: Air sampling was repeatedly performed close to 26 patients with norovirus infections. Samples were analysed for norovirus RNA by RT-qPCR. The times since the patients' last episodes of vomiting and diarrhoea were recorded. Size separating aerosol particle collection was also performed in ward corridors.RESULTS: Norovirus RNA was found in 21 (24%) of 86 air samples from 10 different patients. Only air samples during outbreaks, or before a succeeding outbreak, tested positive for norovirus RNA. Airborne norovirus RNA was also strongly associated with a shorter time period since the last vomiting episode (odds ratio 8.1, p=0.04 within 3 hours since the last vomiting episode). The concentration of airborne norovirus ranged from 5-215 copies/m3, and detectable amounts of norovirus RNA were found in particles <0.95 µm and >4.51 µm.CONCLUSIONS: The results suggest that recent vomiting is the major source of airborne norovirus and imply a connection between airborne norovirus and outbreaks. The presence of norovirus RNA in submicrometre particles indicates that airborne transmission can be an important transmission route.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 75
  • [1]234567...8Nästa
Typ av publikation
konferensbidrag (42)
tidskriftsartikel (27)
rapport (4)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt (10)
populärvet., debatt m.m. (4)
Författare/redaktör
Isaxon, Christina (75)
Pagels, Joakim (45)
Gudmundsson, Anders (45)
Bohgard, Mats (44)
Wierzbicka, Aneta (28)
Tinnerberg, Håkan (24)
visa fler...
Hedmer, Maria (21)
Nilsson, Patrik (21)
Nielsen, Jörn (20)
Messing, Maria (20)
Rissler, Jenny (15)
Assarsson, Eva (15)
Dierschke, Katrin (14)
Löndahl, Jakob (13)
Dahl, Andreas (13)
Eriksson, Axel (11)
Nordin, Erik (10)
Jönsson, Bo A (9)
Andersson, Ulla B (9)
Hagerman, Inger (8)
Malmqvist, Ebba (7)
Deppert, Knut (7)
Wieslander, Gunilla (7)
Swietlicki, Erik (7)
Berglund, Margareta (7)
Kåredal, Monica (6)
Nielsen, J. (5)
Berglund, M (5)
Hagerman, I (5)
Bohgard, M. (5)
Karlsson, Jan-Eric (5)
Wierzbicka, A (5)
Isaxon, C. (5)
Assarsson, E (4)
Dierschke, K (4)
Svensson, Christian (4)
Johansson, Erik (3)
Londahl, J (3)
Broberg Palmgren, Ka ... (3)
Larsson, Per (3)
Lundh, Thomas (3)
Erlandsson, Lena (3)
Bredberg, Anna (3)
Xu, YiYi (3)
Pagels, J. (3)
Jonsson, BAG (3)
Fors, Erik (3)
Asbach, C (3)
Kuhlbusch, T A J (3)
Strandberg, Bo (3)
visa färre...
Lärosäte
Lunds universitet (74)
Göteborgs universitet (3)
Karolinska Institutet (3)
Umeå universitet (1)
Uppsala universitet (1)
Linköpings universitet (1)
visa fler...
Malmö universitet (1)
visa färre...
Språk
Engelska (67)
Svenska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (40)
Teknik (38)
Naturvetenskap (11)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy