SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isbell Forest) "

Sökning: WFRF:(Isbell Forest)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
2.
  • Lipoma, Lucrecia, et al. (författare)
  • No general support for functional diversity enhancing resilience across terrestrial plant communities
  • 2024
  • Ingår i: Global Ecology and Biogeography. - : John Wiley & Sons. - 1466-822X .- 1466-8238.
  • Forskningsöversikt (refereegranskat)abstract
    • Aim: Understanding the mechanisms promoting resilience in plant communities is crucial in times of increasing disturbance and global environmental change. Here, we present the first meta-analysis evaluating the relationship between functional diversity and resilience of plant communities. Specifically, we tested whether the resilience of plant communities is positively correlated with interspecific trait variation (following the niche complementarity hypothesis) and the dominance of acquisitive and small-size species (following the mass ratio hypothesis), and for the context-dependent effects of ecological and methodological differences across studies.Location: Global.Time Period: 2004–2021.Major Taxa Studied: Vascular plants.Methods: We compiled a dataset of 69 independent sites from 26 studies that have quantified resilience. For each site, we calculated functional diversity indices based on the floristic composition and functional traits of the plant community (obtained from the TRY database) which we correlated with resilience of biomass and floristic composition. After transforming correlation coefficients to Fisher's Z-scores, we conducted a hierarchical meta-analysis, using a multilevel random-effects model that accounted for the non-independence of multiple effect sizes and the effects of ecological and methodological moderators. Results: In general, we found no positive functional diversity–resilience relationships of grand mean effect sizes. In contrast to our expectations, we encountered a negative relationship between resilience and trait variety, especially in woody ecosystems, whereas there was a positive relationship between resilience and the dominance of acquisitive species in herbaceous ecosystems. Finally, the functional diversity–resilience relationships were strongly affected by both ecological (biome and disturbance properties) and methodological (temporal scale, study design and resilience metric) characteristics. Main Conclusions: We rejected our hypothesis of a general positive functional diversity–resilience relationship. In addition to strong context dependency, we propose that idiosyncratic effects of single resident species present in the communities before the disturbances and biological legacies could play major roles in the resilience of terrestrial plant communities.
  •  
3.
  • Weiskopf, Sarah R., et al. (författare)
  • A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models
  • 2022
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 72:11, s. 1062-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals. 
  •  
4.
  • Weiskopf, Sarah R., et al. (författare)
  • Increasing the uptake of ecological model results in policy decisions to improve biodiversity outcomes
  • 2022
  • Ingår i: Environmental Modelling & Software. - : Elsevier BV. - 1364-8152 .- 1873-6726. ; 149
  • Tidskriftsartikel (refereegranskat)abstract
    • Models help decision-makers anticipate the consequences of policies for ecosystems and people; for instance, improving our ability to represent interactions between human activities and ecological systems is essential to identify pathways to meet the 2030 Sustainable Development Goals. However, use of modeling outputs in decision-making remains uncommon. We share insights from a multidisciplinary National Socio-Environmental Synthesis Center working group on technical, communication, and process-related factors that facilitate or hamper uptake of model results. We emphasize that it is not simply technical model improvements, but active and iterative stakeholder involvement that can lead to more impactful outcomes. In particular, trust-and relationship-building with decision-makers are key for knowledge-based decision making. In this respect, nurturing knowledge exchange on the interpersonal (e.g., through participatory processes) and institutional level (e.g., through science-policy interfaces across scales) represents a promising approach. To this end, we offer a generalized approach for linking modeling and decision-making.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy