SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isomaa Bo) ;pers:(Stancáková Alena)"

Sökning: WFRF:(Isomaa Bo) > Stancáková Alena

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlqvist, Emma, et al. (författare)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2088-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
2.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
3.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
4.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
5.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.
  • 2011
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n=218,166) and nine studies of children and adolescents (n=19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) =0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio =1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio =1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
  •  
6.
  • Lyssenko, Valeriya, et al. (författare)
  • Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 60:9, s. 2424-2433
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic beta-cell function by potentiating insulin secretion and beta-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS-Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies.Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of beta-cell viability and proliferation. RESULTS-The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS-These findings support beta-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional beta-cell mass in humans. Diabetes 60:2424-2433, 2011
  •  
7.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
8.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
9.
  • Prokopenko, Inga, et al. (författare)
  • A Central Role for GRB10 in Regulation of Islet Function in Man.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
  •  
10.
  • Scott, Robert A, et al. (författare)
  • No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels
  • 2012
  • Ingår i: Diabetes. - Alexandria, VA : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 61:5, s. 1291-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were associated with 2-h glucose (β = 0.06-0.12 mmol/allele, P ≤ 1.53 × 10(-7)), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene-lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy