SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jägerbrand Annika K.) "

Sökning: WFRF:(Jägerbrand Annika K.)

  • Resultat 1-10 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
2.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
3.
  • Alatalo, Juha M., et al. (författare)
  • Bryophyte cover and richness decline after 18 years of experimental warming in Alpine Sweden
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • 1. Bryophytes in the Arctic and Alpine regions are important in terms of biodiversity, cover and biomass. However, climate change and widespread shrubification of alpine and arctic tundra is predicted to increase in the future, with potentially large impacts on bryophyte communities.2. We studies the impact of 18 years of experimental warming with open top chambers (OTCs) on bryophyte cover, richness and diversity in an alpine mesic meadow and a heath plant community in Northern Sweden. In addition we investigated the relationship between deciduous shrubs and bryophytes.3. Cover and richness of bryophytes both declined due to long-term warming, while diversity did not show any significant responses. After 18 years, bryophyte cover had decreased by 71% and 26 in the heath and meadow, while richness declined by 39% and 26%, respectively.4. Synthesis. Decline in total bryophyte cover in both communities in response to long-term warming was driven by a general decline in many species, with only two individual species showing significant declines. Although most of the species included in the individual analyses did not show any detectable changes, the cumulative change in all species was significant. In addition, species loss was slower than the general decline in bryophyte abundance. As hypothesized, we found significant negative relationship between deciduous shrub cover and bryophyte cover, but not bryophyte richness, in both plant communities. This is likely due to a more delayed decline in species richness compared to abundance, similar to what was observed in response to long-term warming.
  •  
4.
  • Alatalo, J. M., et al. (författare)
  • Bryophyte cover and richness decline after 18 years of experimental warming in alpine Sweden
  • 2020
  • Ingår i: Aob Plants. - Oxford : Oxford University Press (OUP). - 2041-2851. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to affect alpine and Arctic tundra communities. Most previous long-term studies have focused on impacts on vascular plants, this study examined impacts of long-term warming on bryophyte communities. Experimental warming with open-top chambers (OTCs) was applied for 18 years to a mesic meadow and a dry heath alpine plant community. Species abundance was measured in 1995, 1999, 2001 and 2013. Species composition changed significantly from original communities in the heath, but remained similar in mesic meadow. Experimental warming increased beta diversity in the heath. Bryophyte cover and species richness both declined with long-term warming, while Simpson diversity showed no significant responses. Over the 18-year period, bryophyte cover in warmed plots decreased from 43 % to 11 % in heath and from 68 % to 35 % in meadow (75 % and 48 % decline, respectively, in original cover), while richness declined by 39 % and 26 %, respectively. Importantly, the decline in cover and richness first emerged after 7 years. Warming caused significant increase in litter in both plant communities. Deciduous shrub and litter cover had negative impact on bryophyte cover. We show that bryophyte species do not respond similarly to climate change. Total bryophyte cover declined in both heath and mesic meadow under experimental long-term warming (by 1.5-3 degrees C), driven by general declines in many species. Principal response curve, cover and richness results suggested that bryophytes in alpine heath are more susceptible to warming than in meadow, supporting the suggestion that bryophytes may be less resistant in drier environments than in wetter habitats. Species loss was slower than the decline in bryophyte abundance, and diversity remained similar in both communities. Increased deciduous shrub and litter cover led to decline in bryophyte cover. The non-linear response to warming over time underlines the importance of long-term experiments and monitoring.
  •  
5.
  • Alatalo, Juha M., et al. (författare)
  • Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra
  • 2014
  • Ingår i: Alpine Botany. - : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 124:2, s. 81-91
  • Tidskriftsartikel (refereegranskat)abstract
    • We experimentally imposed three different kinds of warming scenarios over 3 years on an alpine meadow community to identify the differential effects of climate warming and extreme climatic events on the abundance and biomass of bryophytes and lichens. Treatments consisted of (a) a constant level of warming with open top chambers (an average temperature increase of 1.87 A degrees C), (b) a yearly stepwise increase of warming (average temperature increases of 1.0; 1.87 and 3.54 A degrees C, consecutively), and (c) a pulse warming, i.e., a single first year pulse event of warming (average temperature increase of 3.54 A degrees C only during the first year). To our knowledge, this is the first climate change study that attempts to distinguish between the effects of constant, stepwise and pulse warming on bryophyte and lichen communities. We hypothesised that pulse warming would have a significant short-term effect compared to the other warming treatments, and that stepwise warming would have a significant mid-term effect compared to the other warming treatments. Acrocarpous bryophytes as a group increased in abundance and biomass to the short-term effect of pulse warming. We found no significant effects of mid-term (third-year) stepwise warming. However, one pleurocarpous bryophyte species, Tomentypnum nitens, generally increased in abundance during the warm year 1997 but decreased in control plots and in response to the stepwise warming treatment. Three years of experimental warming (all treatments as a group) did have a significant impact at the community level, yet changes in abundance did not translate into significant changes in the dominance hierarchies at the functional level (for acrocarpous bryophytes, pleurocarpous bryophytes, Sphagnum or lichens), or in significant changes in other bryophyte or lichen species. The results suggest that bryophytes and lichens, both at the functional group and species level, to a large extent are resistant to the different climate change warming simulations that were applied.
  •  
6.
  • Alatalo, Juha M, et al. (författare)
  • Collembola at three alpine subarctic sites resistant to twenty years of experimental warming
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined the effects of micro-scale, site and 19 and 21 years of experimental warming on Collembola in three contrasting alpine subarctic plant communities (poor heath, rich meadow, wet meadow). Unexpectedly, experimental long-term warming had no significant effect on species richness, effective number of species, total abundance or abundance of any Collembola species. There were micro-scale effects on species richness, total abundance, and abundance of 10 of 35 species identified. Site had significant effect on effective number of species, and abundance of six species, with abundance patterns differing between sites. Site and long-term warming gave non-significant trends in species richness.The highest species richness was observed in poor heath, but mean species richness tended to be highest in rich meadow and lowest in wet meadow. Warming showed a tendency for a negative impact on species richness. This long-term warming experiment across three contrasting sites revealed that Collembola is capable of high resistance to climate change. We demonstrated that micro-scale and site effects are the main controlling factors for Collembola abundance in high alpine subarctic environments. Thus local heterogeneity is likely important for soil fauna composition and may play a crucial role in buffering Collembola against future climate change.
  •  
7.
  • Alatalo, J. M., et al. (författare)
  • Impacts of different climate change regimes and extreme climatic events on an alpine meadow community
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 degrees C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 degrees C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 degrees C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity
  •  
8.
  • Alatalo, Juha M., et al. (författare)
  • Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities
  • 2017
  • Ingår i: Scientific Reports. - : Macmillan Publishers Ltd.. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
  •  
9.
  • Alatalo, J. M., et al. (författare)
  • Responses of lichen communities to 18 years of natural and experimental warming
  • 2017
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 120:1, s. 159-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. Methods The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Key Results Between 1993 and 2013, mean annual temperature increased about 2 degrees C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. Conclusions The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens.
  •  
10.
  • Ali, A., et al. (författare)
  • Diversity-productivity dependent resistance of an alpine plant community to different climate change scenarios
  • 2016
  • Ingår i: Ecological Research. - : Wiley. - 0912-3814 .- 1440-1703. ; 31:6, s. 935-945
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report from a experiment imposing different warming scenarios [control with ambient temperature, constant level of moderate warming for 3 years, stepwise increase in warming for 3 years, and one season of high level warming (pulse) simulating an extreme summer event] on an alpine ecosystem to study the impact on species diversity-biomass relationship, and community resistance in terms of biomass production. Multiple linear mixed models indicate that experimental years had stronger influence on biomass than warming scenarios and species diversity. Species diversity and biomass had almost humpback relationships under different warming scenarios over different experimental years. There was generally a negative diversity-biomass relationship, implying that a positive diversity-biomass relationship was not the case. The application of different warming scenarios did not change this tendency. The change in community resistance to all warming scenarios was generally negatively correlated with increasing species diversity, the strength of the correlation varying both between treatments and between years within treatments. The strong effect of experimental years was consistent with the notion that niche complementarity effects increase over time, and hence, higher biomass productivity over experimental years. The strongest negative relationship was found in the first year of the pulse treatment, indicating that the community had weak resistance to an extreme event of one season of abnormally warm climate. Biomass production started recovering during the two subsequent years. Contrasting biomass-related resistance emerged in the different treatments, indicating that micro sites within the same plant community may differ in their resistance to different warming scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73
Typ av publikation
tidskriftsartikel (44)
rapport (14)
konferensbidrag (8)
forskningsöversikt (3)
annan publikation (2)
doktorsavhandling (1)
visa fler...
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (48)
övrigt vetenskapligt/konstnärligt (23)
populärvet., debatt m.m. (2)
Författare/redaktör
Jägerbrand, Annika K ... (43)
Jägerbrand, Annika K ... (24)
Alatalo, Juha M. (15)
Molau, Ulf, 1951 (13)
Gren, Ing-Marie (6)
Molau, Ulf (5)
visa fler...
Alatalo, Juha, 1966- (4)
Alatalo, J. M. (4)
Björk, Robert G., 19 ... (4)
Michelsen, Anders (3)
Soudzilovskaia, Nade ... (3)
Scharn, Ruud (2)
Cornelissen, J. Hans ... (2)
Bai, Yang (2)
Laike, Thorbjörn (2)
Mayrhofer, Helmut (2)
Chen, S. B. (2)
Lindborg, Regina (2)
Jeanneret, Philippe (2)
Johansson, Maria (2)
Pielech, Remigiusz (2)
Boch, Steffen (2)
Brutemark, Andreas (2)
Aerts, Rien (2)
Klanderud, Kari (2)
Jentsch, Anke (2)
Antonson, Hans (2)
Robertson, Kerstin (2)
Jägerbrand, Annika (2)
Waldén, Emelie (2)
Deng, Lei (2)
Hajek, Michal (2)
Bergamini, Ariel (2)
Dembicz, Iwona (2)
Kozub, Łukasz (2)
Marcenò, Corrado (2)
Van Meerbeek, Koenra ... (2)
Guarino, Riccardo (2)
Burrascano, Sabina (2)
Essl, Franz (2)
Filibeck, Goffredo (2)
Jiménez-Alfaro, Borj ... (2)
Kuzemko, Anna (2)
Roleček, Jan (2)
Afif, Elias (2)
Aleffi, Michele (2)
Bátori, Zoltán (2)
Belonovskaya, Elena (2)
Bhatta, Kuber Prasad (2)
Campos, Juan Antonio (2)
visa färre...
Lärosäte
Högskolan i Gävle (67)
Jönköping University (58)
VTI - Statens väg- och transportforskningsinstitut (35)
Göteborgs universitet (16)
Högskolan i Halmstad (12)
Uppsala universitet (8)
visa fler...
Sveriges Lantbruksuniversitet (6)
Mälardalens universitet (4)
Lunds universitet (4)
Stockholms universitet (2)
Högskolan i Borås (2)
Umeå universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (62)
Svenska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (43)
Teknik (23)
Samhällsvetenskap (11)
Lantbruksvetenskap (6)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy