SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jönsen Andreas) ;pers:(Bengtsson Anders A)"

Sökning: WFRF:(Jönsen Andreas) > Bengtsson Anders A

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Linge, Carl Petrus, et al. (författare)
  • Enrichment of Complement, Immunoglobulins, and Autoantibody Targets in the Proteome of Platelets from Patients with Systemic Lupus Erythematosus
  • 2022
  • Ingår i: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 122:9, s. 1486-1501
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Systemic lupus erythematosus (SLE) is a complex disease characterized by autoimmunity toward apoptotic cells, excessive amounts of circulating immune complexes, and complement activation. A decreased platelet size has been observed in SLE and their nonhemostatic functions may play an active role in the disease. The main objective of this study was to find clues that could explain their decreased size and functional role, analyzing the entire platelet proteome. Methods Platelets were isolated from 23 patients with SLE. The five individuals with the highest and lowest average platelet forward scatter were selected for further analysis. Platelet protein content was analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and compared with platelets from five healthy controls. Data are available via ProteomeXchange with identifier PXD031202. Results Out of 2,572 proteins identified, 396 had significantly different levels (ANOVA q-value ≤ 0.01). Forty proteins, including immunoglobulin-, complement- and phosphatidylserinebinding proteins had higher abundance in platelets from SLE patients, largely independent of size (fold difference of ≥1.5 and a t-test p-value of ≤0.05 as cut-off). Functional characterization revealed increased degranulation and skewed hemostatic balance in platelets from SLE patients. In the SLE proteome, immunoglobulin proteins were negatively correlated to serum complement C3 and C4 and the highest relative levels were detected in platelets of normal size. Conclusion Platelets from SLE patients shared a specific protein profile, including immunoglobulins, complement proteins, and autoantigens, largely independent of the platelet size and in agreement with an integrated role for platelets in SLE.
  •  
2.
  • Wirestam, Lina, et al. (författare)
  • Low Intra-Individual Variation in Mean Platelet Volume Over Time in Systemic Lupus Erythematosus
  • 2021
  • Ingår i: Frontiers in Medicine. - : Frontiers Media SA. - 2296-858X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelets have recently emerged as important immune modulators in systemic lupus erythematosus (SLE), in addition to their role in thrombosis and cardiovascular disease. However, studies investigating mean platelet volume (MPV) in SLE are often scarce, conflicting and cross-sectional. In this study, MPV was measured in clinical routine throughout a defined time-period to quantify both individual MPV fluctuations and investigate if such variations are associated with disease activity and clinical phenotypes of SLE. Of our 212 patients, 34 patients had only one MPV value reported with the remaining 178 patients having between 2 and 19 visits with recorded MPV values. The intra-individual MPV variation was low, with a median variation of 0.7 fL. This was further supported by the finding that 84% of patients stayed within their reference interval category (i.e., small, normal or large) over time. In our cohort, no correlation between disease activity and MPV neither cross-sectionally nor longitudinally was found. Mean platelet volume values were significantly smaller in SLE patients (mean 10.5 fL) compared to controls (mean 10.8 fL), p < 0.0001. Based on the reference interval, 2.4% (n = 5) of patients had large-sized platelets, 84.4% (n = 179) had normal-sized and 13.2% (n = 28) had small-sized. A larger proportion (85.7%) of patients with small-sized platelets met the anti-dsDNA criterion (ACR10b; p = 0.003) compared to patients with normal and large (57.6%) sized platelets. In conclusion, the intra-individual MPV variation was of low magnitude and fluctuations in disease activity did not have any significant impact on MPV longitudinally. This lack of variability in MPV over time indicates that measuring MPV at any time-point is sufficient. Further studies are warranted to evaluate MPV as a possible biomarker in SLE, as well as to determine the underlying mechanisms influencing platelet size in SLE.
  •  
3.
  • Zervides, Kristoffer A, et al. (författare)
  • Serum S100A8/A9 concentrations are associated with neuropsychiatric involvement in systemic lupus erythematosus: a cross-sectional study
  • 2022
  • Ingår i: BMC Rheumatology. - : Springer Science and Business Media LLC. - 2520-1026. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Neuropsychiatric (NP) involvement and fatigue are major problems in systemic lupus erythematosus (SLE). S100A8/A9 is a marker of inflammation and responds to therapy in SLE patients. S100A8/A9 has an immunopathogenic role in various neurological diseases. We investigated S100A8/A9 in relation to NP-involvement and fatigue in SLE.METHODS: 72 consecutive SLE outpatients at a tertiary centre and 26 healthy controls were included in this cross-sectional study. NPSLE was determined by specialists in rheumatology and neurology and defined according to three attribution models: "ACR", "SLICC A" and "SLICC B". Cerebral MRI was assessed by a neuroradiologist and neurocognitive testing by a neuropsychologist. The individuals were assessed by scores of pain (VAS), fatigue (VAS and FSS), and depression (MADRS-S). Concentrations of S100A8/A9 in serum and cerebrospinal fluid were measured with ELISA. Statistical calculations were performed using non-parametric methods.RESULTS: Serum concentrations of S100A8/A9 were higher in SLE patients compared with controls (medians 1230 ng/ml; 790 ng/ml, p = 0.023). The concentrations were higher in NPSLE patients compared with non-NPSLE patients when applying the SLICC A and ACR models, but not significant when applying the SLICC B model (medians 1400 ng/ml; 920 ng/ml, p = 0.011; 1560 ng/ml; 1090 ng/ml, p = 0.050; 1460 ng/ml; 1090 ng/ml, p = 0.083, respectively). No differences of CSF S100A8/A9 concentrations were observed between NPSLE and non-NPSLE patients. SLE patients with depression or cognitive dysfunction as an ACR NPSLE manifestation had higher serum S100A8/A9 concentrations than non-NPSLE patients (median 1460 ng/ml, p = 0.007 and 1380 ng/ml, p = 0.013, respectively). Higher serum S100A8/A9 correlated with higher VAS fatigue (r = 0.31; p = 0.008) and VAS pain (r = 0.27, p = 0.021) in SLE patients. Serum S100A8/A9 was not independently associated with NPSLE when adjusting for scores of fatigue (FSS) and pain (VAS) (OR 1.86, 95% CI 0.93-3.73, p = 0.08).CONCLUSIONS: Serum S100A8/A9 concentrations may be associated with NPSLE and fatigue. S100A8/A9 may be of interest in evaluating NPSLE, although further investigations are needed.
  •  
4.
  • Almlöf, Jonas Carlsson, et al. (författare)
  • Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus
  • 2019
  • Ingår i: Human Genetics. - : SPRINGER. - 0340-6717 .- 1432-1203. ; 138:2, s. 141-150
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE, OMIM 152700) is a systemic autoimmune disease with a complex etiology. The mode of inheritance of the genetic risk beyond familial SLE cases is currently unknown. Additionally, the contribution of heterozygous variants in genes known to cause monogenic SLE is not fully understood. Whole-genome sequencing of DNA samples from 71 Swedish patients with SLE and their healthy biological parents was performed to investigate the general genetic risk of SLE using known SLE GWAS risk loci identified using the ImmunoChip, variants in genes associated to monogenic SLE, and the mode of inheritance of SLE risk alleles in these families. A random forest model for predicting genetic risk for SLE showed that the SLE risk variants were mainly inherited from one of the parents. In the 71 patients, we detected a significant enrichment of ultra-rare (0.1%) missense and nonsense mutations in 22 genes known to cause monogenic forms of SLE. We identified one previously reported homozygous nonsense mutation in the C1QC (Complement C1q C Chain) gene, which explains the immunodeficiency and severe SLE phenotype of that patient. We also identified seven ultra-rare, coding heterozygous variants in five genes (C1S, DNASE1L3, DNASE1, IFIH1, and RNASEH2A) involved in monogenic SLE. Our findings indicate a complex contribution to the overall genetic risk of SLE by rare variants in genes associated with monogenic forms of SLE. The rare variants were inherited from the other parent than the one who passed on the more common risk variants leading to an increased genetic burden for SLE in the child. Higher frequency SLE risk variants are mostly passed from one of the parents to the offspring affected with SLE. In contrast, the other parent, in seven cases, contributed heterozygous rare variants in genes associated with monogenic forms of SLE, suggesting a larger impact of rare variants in SLE than hitherto reported.
  •  
5.
  • Bolin, Karin, 1982-, et al. (författare)
  • Variants in BANK1 are associated with lupus nephritis
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Lupus nephritis (LN) is a cause of significant morbidity in SLE. While the genetic background to SLE has been well characterized, less is known about genes predisposing to LN.Methods: The study consisted of 2886 SLE patients, including 947 (33%) with LN. The discovery cohort (Sweden, n=1091) and replication cohort 1 (US, n=962) were genotyped on the Immunochip and replication cohort 2 (Norway/Denmark, n=833) on a custom array chip. Allele frequencies were compared between patients with LN, proliferative nephritis, end-stage renal disease and LN negative patients. SNPs with p-value <0.001 in the discovery cohort were analyzed in replication cohort 1. Ten SNPs associated with LN in the discovery cohort (p<0.0002) were genotyped in replication cohort 2. DNA methylation data were available for 180 LN patients from the discovery cohort.Results: In the discovery cohort, six gene loci were associated with LN (p<1x10-4, NFKBIA, CACNA1S, ITGA1, BANK1, OR2Y and PHCA). SNPs in BANK1 showed the strongest association with LN in replication cohort 1 (p=9.5x10-4), with a tendency for an association in replication cohort 2 (p=0.052). In a meta-analysis of all three cohorts the association between LN and BANK1 rs4699259, was strengthened (p=1.7x10‑7). There were no associations to proliferative nephritis or ESRD in the meta-analysis. Methylation quantitative trait loci (MeQTL) effects between a CpG site and several SNPs in BANK1 were identified.Conclusion: Genetic variations in BANK1 are associated with LN. There is evidence for genetic regulation of DNA methylation within the BANK1 locus, however, the exact role of BANK1 in LN pathogenesis remains to be elucidated.
  •  
6.
  • Bolin, Karin, et al. (författare)
  • Variants in BANK1 are associated with lupus nephritis of European ancestry
  • 2021
  • Ingår i: Genes and Immunity. - : Springer Nature. - 1466-4879 .- 1476-5470. ; 22:3, s. 194-202
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of lupus nephritis (LN) has not been completely elucidated. We performed a case-only study of 2886 SLE patients, including 947 (33%) with LN. Renal biopsies were available from 396 patients. The discovery cohort (Sweden, n = 1091) and replication cohort 1 (US, n = 962) were genotyped on the Immunochip and replication cohort 2 (Denmark/Norway, n = 833) on a custom array. Patients with LN, proliferative nephritis, or LN with end-stage renal disease were compared with SLE without nephritis. Six loci were associated with LN (p < 1 × 10−4, NFKBIA, CACNA1S, ITGA1, BANK1, OR2Y, and ACER3) in the discovery cohort. Variants in BANK1 showed the strongest association with LN in replication cohort 1 (p = 9.5 × 10−4) and proliferative nephritis in a meta-analysis of discovery and replication cohort 1. There was a weak association between BANK1 and LN in replication cohort 2 (p = 0.052), and in the meta-analysis of all three cohorts the association was strengthened (p = 2.2 × 10−7). DNA methylation data in 180 LN patients demonstrated methylation quantitative trait loci (meQTL) effects between a CpG site and BANK1 variants. To conclude, we describe genetic variations in BANK1 associated with LN and evidence for genetic regulation of DNA methylation within the BANK1 locus. This indicates a role for BANK1 in LN pathogenesis.
  •  
7.
  • Carlsson Almlöf, Jonas, et al. (författare)
  • Contributions of de novo variants to systemic lupus erythematosus
  • 2021
  • Ingår i: European Journal of Human Genetics. - : Springer Nature. - 1018-4813 .- 1476-5438. ; 29:1, s. 184-193
  • Tidskriftsartikel (refereegranskat)abstract
    • By performing whole-genome sequencing in a Swedish cohort of 71 parent-offspring trios, in which the child in each family is affected by systemic lupus erythematosus (SLE, OMIM 152700), we investigated the contribution of de novo variants to risk of SLE. We found de novo single nucleotide variants (SNVs) to be significantly enriched in gene promoters in SLE patients compared with healthy controls at a level corresponding to 26 de novo promoter SNVs more in each patient than expected. We identified 12 de novo SNVs in promoter regions of genes that have been previously implicated in SLE, or that have functions that could be of relevance to SLE. Furthermore, we detected three missense de novo SNVs, five de novo insertion-deletions, and three de novo structural variants with potential to affect the expression of genes that are relevant for SLE. Based on enrichment analysis, disease-affecting de novo SNVs are expected to occur in one-third of SLE patients. This study shows that de novo variants in promoters commonly contribute to the genetic risk of SLE. The fact that de novo SNVs in SLE were enriched to promoter regions highlights the importance of using whole-genome sequencing for identification of de novo variants.
  •  
8.
  • Carlsson Almlöf, Jonas, et al. (författare)
  • Novel risk genes for systemic lupus erythematosus predicted by random forest classification
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified risk loci for SLE, but a large proportion of the genetic contribution to SLE still remains unexplained. To detect novel risk genes, and to predict an individual's SLE risk we designed a random forest classifier using SNP genotype data generated on the "Immunochip" from 1,160 patients with SLE and 2,711 controls. Using gene importance scores defined by the random forest classifier, we identified 15 potential novel risk genes for SLE. Of them 12 are associated with other autoimmune diseases than SLE, whereas three genes (ZNF804A, CDK1, and MANF) have not previously been associated with autoimmunity. Random forest classification also allowed prediction of patients at risk for lupus nephritis with an area under the curve of 0.94. By allele-specific gene expression analysis we detected cis-regulatory SNPs that affect the expression levels of six of the top 40 genes designed by the random forest analysis, indicating a regulatory role for the identified risk variants. The 40 top genes from the prediction were overrepresented for differential expression in B and T cells according to RNA-sequencing of samples from five healthy donors, with more frequent over-expression in B cells compared to T cells.
  •  
9.
  • Diaz-Gallo, Lina-Marcela, et al. (författare)
  • Four Systemic Lupus Erythematosus Subgroups, Defined by Autoantibodies Status, Differ Regarding HLA-DRB1 Genotype Associations and Immunological and Clinical Manifestations
  • 2022
  • Ingår i: ACR Open Rheumatology. - : Wiley. - 2578-5745. ; 4:1, s. 27-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The heterogeneity of systemic lupus erythematosus (SLE) constitutes clinical and therapeutical challenges. We therefore studied whether unrecognized disease subgroups can be identified by using autoantibody profiling together with HLA-DRB1 alleles and immunological and clinical data.Methods: An unsupervised cluster analysis was performed based on detection of 13 SLE-associated autoantibodies (double-stranded DNA, nucleosomes, ribosomal P, ribonucleoprotein [RNP] 68, RNPA, Smith [Sm], Sm/RNP, Sjögren's syndrome antigen A [SSA]/Ro52, SSA/Ro60, Sjögren's syndrome antigen B [SSB]/La, cardiolipin [CL]-Immunoglobulin G [IgG], CL-Immunoglobulin M [IgM], and β2 glycoprotein I [β2 GPI]-IgG) in 911 patients with SLE from two cohorts. We evaluated whether each SLE subgroup is associated with HLA-DRB1 alleles, clinical manifestations (n = 743), and cytokine levels in circulation (n = 446).Results: Our analysis identified four subgroups among the patients with SLE. Subgroup 1 (29.3%) was dominated by anti-SSA/Ro60/Ro52/SSB autoantibodies and was strongly associated with HLA-DRB1*03 (odds ratio [OR] = 4.73; 95% confidence interval [CI] = 4.52-4.94). Discoid lesions were more common for this disease subgroup (OR = 1.71, 95% CI = 1.18-2.47). Subgroup 2 (28.7%) was dominated by anti-nucleosome/SmRNP/DNA/RNPA autoantibodies and associated with HLA-DRB1*15 (OR = 1.62, 95% CI = 1.41-1.84). Nephritis was most common in this subgroup (OR = 1.61, 95% CI = 1.14-2.26). Subgroup 3 (23.8%) was characterized by anti-ß2 GPI-IgG/anti-CL-IgG/IgM autoantibodies and a higher frequency of HLA-DRB1*04 compared with the other patients with SLE. Vascular events were more common in Subgroup 3 (OR = 1.74, 95% CI = 1.2-2.5). Subgroup 4 (18.2%) was negative for the investigated autoantibodies, and this subgroup was not associated with HLA-DRB1. Additionally, the levels of eight cytokines significantly differed among the disease subgroups.Conclusion: Our findings suggest that four fairly distinct subgroups can be identified on the basis of the autoantibody profile in SLE. These four SLE subgroups differ regarding associations with HLA-DRB1 alleles and immunological and clinical features, suggesting dissimilar disease pathways.
  •  
10.
  • Hedenstedt, Anna, et al. (författare)
  • B cell polygenic risk scores associate with anti-dsDNA antibodies and nephritis in systemic lupus erythematosus.
  • 2023
  • Ingår i: Lupus science & medicine. - : BMJ Publishing Group Ltd. - 2053-8790. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • B cell function and autoantibodies are important in SLE pathogenesis. In this work, we aimed to investigate the impact of cumulative SLE B cell genetics on SLE subphenotype and autoantibody profile.Female patients with SLE (n=1248) and healthy controls (n=400) were genotyped using Illumina's Global Screening Array. Two polygenic risk scores (PRSs), one representing B cell genes and the other B cell activation genes, were calculated for each individual using risk loci for SLE in genes assigned to B cell-related pathways according to the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and Reactome Databases.Double-stranded DNA (dsDNA) antibodies were more prevalent among patients with a high compared with a low SLE B cell PRS (OR 1.47 (1.07 to 2.01), p=0.018), and effect sizes were augmented in patients with human leucocyte antigen (HLA) risk haplotypes HLA-DRB1*03:01 and HLA-DRB1*15:01 (DRB1*03/15 -/- (OR 0.99 (0.56 to 1.77), p=0.98; DRB1*03/15 +/- or -/+ (OR 1.64 (1.06 to 2.54), p=0.028; and DRB1*03/15 +/+ (OR 4.47 (1.21 to 16.47), p=0.024). Further, a high compared with a low B cell PRS was associated with low complement levels in DRB1*03/15 +/+ patients (OR 3.92 (1.22 to 12.64), p=0.022). The prevalence of lupus nephritis (LN) was higher in patients with a B cell activation PRS above the third quartile compared with patients below (OR 1.32 (1.00 to 1.74), p=0.048).High genetic burden related to B cell function is associated with dsDNA antibody development and LN. Assessing B cell PRSs may be important in order to determine immunological pathways influencing SLE and to predict clinical phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41
Typ av publikation
tidskriftsartikel (38)
annan publikation (3)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Jönsen, Andreas (41)
Bengtsson, Anders A. (41)
Gunnarsson, Iva (26)
Sjöwall, Christopher (23)
Rönnblom, Lars (21)
Svenungsson, Elisabe ... (20)
visa fler...
Leonard, Dag, 1975- (19)
Sandling, Johanna K. (16)
Rantapää-Dahlqvist, ... (13)
Eloranta, Maija-Leen ... (12)
Syvänen, Ann-Christi ... (11)
Gullstrand, Birgitta (10)
Nordmark, Gunnel (8)
Zickert, Agneta (8)
Tyden, Helena (6)
Molberg, Øyvind (6)
Lerang, Karoline (6)
Alexsson, Andrei (5)
Padyukov, Leonid (5)
Kahn, Robin (5)
Imgenberg-Kreuz, Jul ... (5)
Pucholt, Pascal, Dr, ... (5)
Kozyrev, Sergey V. (4)
Lindblad-Toh, Kersti ... (4)
Jacobsen, Søren (4)
Almlöf, Jonas Carlss ... (4)
Strevens, Helena (4)
Bianchi, Matteo (4)
Bengtsson, Christine (4)
Voss, Anne (4)
Jacobsson, Bo, 1960 (3)
Truedsson, Lennart (3)
Sturfelt, Gunnar (3)
Bylund, Johan, 1975 (3)
Syvänen, Ann-Christi ... (3)
Criswell, Lindsey A. (3)
Rönnelid, Johan (3)
Saleh, Muna Atallah (3)
Blom, Anna M. (3)
Diaz-Gallo, Lina-Mar ... (3)
Lundell, Anna-Carin, ... (3)
Rudin, Anna, 1961 (3)
Lood, Christian (3)
Sayadi, Ahmed (3)
Martin, Myriam (3)
Jern, Andreas (3)
Molberg, O (3)
Bolin, Karin (3)
Nititham, Joanne (3)
Troldborg, Anne (3)
visa färre...
Lärosäte
Lunds universitet (34)
Uppsala universitet (24)
Linköpings universitet (23)
Karolinska Institutet (22)
Umeå universitet (11)
Göteborgs universitet (5)
visa fler...
Stockholms universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (40)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy