SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jack Clifford) ;pers:(Blennow Kaj 1958)"

Search: WFRF:(Jack Clifford) > Blennow Kaj 1958

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Jack, Clifford R, et al. (author)
  • A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers.
  • 2016
  • In: Neurology. - 1526-632X. ; 87:5, s. 539-47
  • Journal article (peer-reviewed)abstract
    • Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the "A/T/N" system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. "A" refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); "T," the value of a tau biomarker (CSF phospho tau, or tau PET); and "N," biomarkers of neurodegeneration or neuronal injury ([(18)F]-fluorodeoxyglucose-PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N-, or A+/T-/N-, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme.
  •  
3.
  •  
4.
  • Kern, Silke, et al. (author)
  • Association of Cerebrospinal Fluid Neurofilament Light Protein With Risk of Mild Cognitive Impairment Among Individuals Without Cognitive Impairment.
  • 2019
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 76:2, s. 187-193
  • Journal article (peer-reviewed)abstract
    • Accumulating data suggest that elevated cerebrospinal fluid (CSF) neurofilament light (NfL) and neurogranin (Ng) levels are associated with cognitive decline and may be useful markers of neurodegeneration. However, to our knowledge, previous studies have not assessed these CSF markers in the community, evaluated them with regards to risk of mild cognitive impairment (MCI), or compared their prognostic value with CSF total tau (T-tau) or phosphorylated tau (P-tau).To determine (1) whether CSF NfL and Ng levels were associated with risk of MCI, (2) the effect size of these markers compared with CSF T-tau or P-tau for risk of MCI, and (3) whether CSF amyloid-β (Aβ42) modified these associations.The analyses included 648 participants without cognitive impairment who were enrolled into the prospective population-based Mayo Clinic Study of Aging between January 2004 and December 2015 with available CSF data and at least 1 follow-up visit. Participants were followed up for a median of 3.8 years (interquartile range, 2.6-5.4 years). The CSF NfL and Ng levels were measured using an in-house sandwich enzyme-linked immunosorbent assay. The CSF Aβ42, T-tau, and P-tau levels were measured with automated electrochemiluminescence immunoassays. Cox proportional hazards models, with age as the timescale, were used to assess the association between CSF NfL, Ng, Aβ42, T-tau, or P-tau with risk of MCI after adjusting for sex, education, apolipoprotein E genotype, and the Charlson comorbidity index. To examine CSF Aβ42 as an effect modifier, it was categorized into tertiles; the bottom tertile was defined as having elevated brain amyloid.Risk of MCI.At baseline, the median age of the 648 participants without cognitive impairment was 72.3 years (range, 50.7-95.3 years) and 366 (56.5%) were men; 96 (14.8%) developed incident MCI. Compared with the bottom quartile, the top quartile of CSF NfL was associated with a 3.1-fold increased risk of MCI (hazard ratio, 3.13; 95% CI, 1.36-7.18) in multivariate models. Neither CSF T-tau, P-tau, nor Ng was associated with risk of MCI. There was no interaction between Aβ42 and CSF NfL for risk of MCI.Elevated CSF NfL levels but not CSF T-tau, P-tau or Ng are a risk factor for MCI in a community population and are independent of brain amyloid.
  •  
5.
  • Lewczuk, Piotr, et al. (author)
  • Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry.
  • 2018
  • In: The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry. - : Informa UK Limited. - 1814-1412. ; 19:4, s. 244-328
  • Journal article (peer-reviewed)abstract
    • In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-β positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.
  •  
6.
  • Mielke, Michelle M, et al. (author)
  • Comparison of variables associated with cerebrospinal fluid neurofilament, total-tau, and neurogranin.
  • 2019
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 15:11, s. 1437-1447
  • Journal article (peer-reviewed)abstract
    • Three cerebrospinal fluid (CSF) markers of neurodegeneration (N) (neurofilament light [NfL], total-tau [T-tau], and neurogranin [Ng]) have been proposed under the AT(N) scheme of the National Institute on Aging-Alzheimer's Association Research Framework.We examined, in a community-based population (N=777, aged 50-95) (1) what variables were associated with each of the CSF (N) markers, and (2) whether the variables associated with each marker differed by increased brain amyloid. CSF T-tau was measured with an automated electrochemiluminescence Elecsys immunoassay; NfL and Ng were measured with in-house enzyme-linked immunosorbent assays.Multiple variables were differentially associated with CSF NfL and T-tau levels, but not Ng. Most associations were attenuated after adjustment for age and sex. T-tau had the strongest association with cognition in the presence of amyloidosis, followed by Ng. Variables associations with NfL did not differ by amyloid status.Understanding factors that influence CSF (N) markers will assist in the interpretation and utility of these markers in clinical practice.
  •  
7.
  • Therriault, Joseph, et al. (author)
  • Biomarker-based staging of Alzheimer disease: rationale and clinical applications.
  • 2024
  • In: Nature reviews. Neurology. - 1759-4766 .- 1759-4758. ; 20:4, s. 232-244
  • Journal article (peer-reviewed)abstract
    • Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity ofAlzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
  •  
8.
  • Tosun, Duygu, et al. (author)
  • Detection of β-amyloid positivity in Alzheimer's Disease Neuroimaging Initiative participants with demographics, cognition, MRI and plasma biomarkers.
  • 2021
  • In: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:2
  • Journal article (peer-reviewed)abstract
    • In vivo gold standard for the ante-mortem assessment of brain β-amyloid pathology is currently β-amyloid positron emission tomography or cerebrospinal fluid measures of β-amyloid42 or the β-amyloid42/β-amyloid40 ratio. The widespread acceptance of a biomarker classification scheme for the Alzheimer's disease continuum has ignited interest in more affordable and accessible approaches to detect Alzheimer's disease β-amyloid pathology, a process that often slows down the recruitment into, and adds to the cost of, clinical trials. Recently, there has been considerable excitement concerning the value of blood biomarkers. Leveraging multidisciplinary data from cognitively unimpaired participants and participants with mild cognitive impairment recruited by the multisite biomarker study of Alzheimer's Disease Neuroimaging Initiative, here we assessed to what extent plasma β-amyloid42/β-amyloid40, neurofilament light and phosphorylated-tau at threonine-181 biomarkers detect the presence of β-amyloid pathology, and to what extent the addition of clinical information such as demographic data, APOE genotype, cognitive assessments and MRI can assist plasma biomarkers in detecting β-amyloid-positivity. Our results confirm plasma β-amyloid42/β-amyloid40 as a robust biomarker of brain β-amyloid-positivity (area under curve, 0.80-0.87). Plasma phosphorylated-tau at threonine-181 detected β-amyloid-positivity only in the cognitively impaired with a moderate area under curve of 0.67, whereas plasma neurofilament light did not detect β-amyloid-positivity in either group of participants. Clinical information as well as MRI-score independently detected positron emission tomography β-amyloid-positivity in both cognitively unimpaired and impaired (area under curve, 0.69-0.81). Clinical information, particularly APOE ε4 status, enhanced the performance of plasma biomarkers in the detection of positron emission tomography β-amyloid-positivity by 0.06-0.14 units of area under curve for cognitively unimpaired, and by 0.21-0.25 units for cognitively impaired; and further enhancement of these models with an MRI-score of β-amyloid-positivity yielded an additional improvement of 0.04-0.11 units of area under curve for cognitively unimpaired and 0.05-0.09 units for cognitively impaired. Taken together, these multi-disciplinary results suggest that when combined with clinical information, plasma phosphorylated-tau at threonine-181 and neurofilament light biomarkers, and an MRI-score could effectively identify β-amyloid+ cognitively unimpaired and impaired (area under curve, 0.80-0.90). Yet, when the MRI-score is considered in combination with clinical information, plasma phosphorylated-tau at threonine-181 and plasma neurofilament light have minimal added value for detecting β-amyloid-positivity. Our systematic comparison of β-amyloid-positivity detection models identified effective combinations of demographics, APOE, global cognition, MRI and plasma biomarkers. Promising minimally invasive and low-cost predictors such as plasma biomarkers of β-amyloid42/β-amyloid40 may be improved by age and APOE genotype.
  •  
9.
  • Trojanowski, John Q, et al. (author)
  • Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects.
  • 2010
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 6:3, s. 230-8
  • Research review (peer-reviewed)abstract
    • Here, we review progress by the Penn Biomarker Core in the Alzheimer's Disease Neuroimaging Initiative (ADNI) toward developing a pathological cerebrospinal fluid (CSF) and plasma biomarker signature for mild Alzheimer's disease (AD) as well as a biomarker profile that predicts conversion of mild cognitive impairment (MCI) and/or normal control subjects to AD. The Penn Biomarker Core also collaborated with other ADNI Cores to integrate data across ADNI to temporally order changes in clinical measures, imaging data, and chemical biomarkers that serve as mileposts and predictors of the conversion of normal control to MCI as well as MCI to AD, and the progression of AD. Initial CSF studies by the ADNI Biomarker Core revealed a pathological CSF biomarker signature of AD defined by the combination of Abeta1-42 and total tau (T-tau) that effectively delineates mild AD in the large multisite prospective clinical investigation conducted in ADNI. This signature appears to predict conversion from MCI to AD. Data fusion efforts across ADNI Cores generated a model for the temporal ordering of AD biomarkers which suggests that Abeta amyloid biomarkers become abnormal first, followed by changes in neurodegenerative biomarkers (CSF tau, F-18 fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging) with the onset of clinical symptoms. The timing of these changes varies in individual patients due to genetic and environmental factors that increase or decrease an individual's resilience in response to progressive accumulations of AD pathologies. Further studies in ADNI will refine this model and render the biomarkers studied in ADNI more applicable to routine diagnosis and to clinical trials of disease modifying therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view