SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacob J.) srt2:(2010-2019);mspu:(licentiatethesis)"

Sökning: WFRF:(Jacob J.) > (2010-2019) > Licentiatavhandling

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alvbrant, Joakim, 1973- (författare)
  • A study on emerging electronics for systems accepting soft errors
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Moore’s law has until today mostly relied on shrinkage of the size of the devices inintegrated circuits. However, soon the granularity of the atoms will set a limit together with increased error probability of the devices. How can Moore’s law continue in thefuture? To overcome the increased error rate, we need to introduce redundancy. Applyingmethods from biology may be a way forward, using some of the strategies that transformsan egg into a fetus, but with electronic cells.A redundant system is less sensitive to failing components. We define electronic clayas a massive redundancy system of interchangeable and unified subsystems. We show how a mean voter, which is simpler than a majority voter, impact a redundant systemand how optimization can be formalized to minimize the impact of failing subsystems.The performance at given yield can be estimated with a first order model, without the need for Monte-Carlo simulations. The methods are applied and verified on a redundant finite-impulse response filter.The elementary circuit behavior of the memristor, ”the missing circuit element”, is investigated for fundamental understanding and how it can be used in applications. Different available simulation models are presented and the linear drift model is simulated with Joglekar-Wolf and Biolek window functions. Driven by a sinusoidal current, the memristor is a frequency dependent component with a cut-off frequency. The memristor can be densely packed and used in structures that both stores and compute in the same circuit, as neurons do. Surrounding circuit has to affect (write) and react (read) to the memristor with the same two terminals.We looked at artificial neural network for pattern recognition, but also for self organization in electronic cell array. Finally we look at wireless sensor network and how such system can adopt to the environment. This is also a massive redundant clay-like system.Future electronic systems will be massively redundant and adaptive. Moore’s law will continue, not based on shrinking device sizes, but on cheaper, numerous, unified and interchangeable subsystems.
  •  
2.
  • Sadeghifar, Mohammad Reza, 1983- (författare)
  • On High-Speed Digital-to-Analog Converters and Semi-Digital FIR Filters
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High-speed and high-resolution digital-to-analog converters (DACs) are vital components in all telecommunication systems. Radio-frequency digital-to-analog converter (RFDAC) provides high-speed and high-resolution conversion from digital domain to an analog signal. RFDACs can be employed in direct-conversion radio transmitter architectures. The idea of RFDAC is to utilize an oscillatory pulse-amplitude modulation instead of the conventional zero-order hold pulse amplitude modulation, which results in DAC output spectrum to have high energy high-frequency lobe, other than the Nyquist main lobe. The frequency of the oscillatory pulse can be chosen, with respect to the sample frequency, such that the aliasing images of the signal at integer multiples of the sample frequency are landed in the high-energy high-frequency lobes of the DAC frequency response. Therefore the high-frequency images of the signal can be used as the output of the DAC, i.e., no need to the mixing stage for frequency up-conversion after the DAC in the radio transmitter. The mixing stage however is not eliminated but it is rather moved into the DAC elements and therefore the local oscillator (LO) signal with high frequency should be delivered to each individual DAC element.In direct-conversion architecture of IQ modulators which utilize the RFDAC technique, however, there is a problem of finite image rejection. The origin of this problem is the different polarity of the spectral response of the oscillatory pulse-amplitude modulation in I and Q branches. The conditions where this problem can be alleviated in IQ modulator employing RFDACs is also discussed in this work.ΣΔ modulators are used preceding the DAC in the transmitter chain to reduce the digital signal’s number of bits, still maintain the same resolution. By utilizing the ΣΔ modulator now the total number of DAC elements has decreased and therefore the delivery of the high-frequency LO signal to each DAC element is practical. One of the costs of employing ΣΔ modulator, however, is a higher quantization noise power at the output of the DAC. The quantization noise is ideally spectrally shaped to out-of-band frequencies by the ΣΔ modulator. The shaped noise which usually has comparatively high power must be filtered out to fulfill the radio transmission spectral mask requirement.Semi-digital FIR filter can be used in the context of digital-to-analog conversion, cascaded with ΣΔ modulator to filter the out-of-band noise by the modulator. In the same time it converts the signal from digital domain to an analog quantity. In general case, we can have a multi-bit, semi-digital FIR filter where each tap of the filter is realized with a sub-DAC of M bits. The delay elements are also realized with M-bit shift registers. If the output of the modulator is given by a single bit, the semi-digital FIR filter taps are simply controlled by a single switch assuming a current-steering architecture DAC. One of the major advantages is that the static linearity of the DAC is optimum. Since there are only two output levels available in the DAC, the static transfer function, regardless of the mismatch errors, is always given by a straight line.In this work, the design of SDFIR filter is done through an optimization procedure where the ΣΔ noise transfer function is also taken into account. Different constraints are defined for different applications in formulation of the SDFIR optimization problem. For a given radio transmitter application the objective function can be defined as, e.g., the hardware cost for SDFIR implementation while the constraint can be set to fulfill the radio transmitter spectral emission mask.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
Typ av innehåll
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Alvbrant, Joakim, 19 ... (1)
Wikner, J. Jacob, Dr ... (1)
Nilsson, Emil, Dr. (1)
Sadeghifar, Mohammad ... (1)
Wikner, J Jacob, Ass ... (1)
Hägglund, Robert, Dr ... (1)
Lärosäte
Linköpings universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy