SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsen Sten Eirik W) ;hsvcat:3"

Sökning: WFRF:(Jacobsen Sten Eirik W) > Medicin och hälsovetenskap

  • Resultat 1-10 av 91
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buitenhuis, M, et al. (författare)
  • Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2
  • 2005
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 105:11, s. 4272-4281
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially upregulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34(+) cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of beta 2-microglobulin(-/-) nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34(+) cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. These data demonstrate that both Id1 and Id2 play a critical, although differential role in granulopolesis.
  •  
2.
  • Breitbach, Martin, et al. (författare)
  • Potential risks of bone marrow cell transplantation into infarcted hearts
  • 2007
  • Ingår i: Blood. - Washington, DC : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 110:4, s. 1362-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular replacement therapy has emerged as a novel strategy for the treatment of heart failure. The aim of our study was to determine the fate of injected mesenchymal stem cells (MSCs) and whole bone marrow (BM) cells in the infarcted heart. MSCs were purified from BM of transgenic mice and characterized using flow cytometry and in vitro differentiation assays. Myocardial infarctions were generated in mice and different cell populations including transgenic MSCs, unfractionated BM cells, or purified hematopoietic progenitors were injected. Encapsulated structures were found in the infarcted areas of a large fraction of hearts after injecting MSCs (22 of 43, 51.2%) and unfractionated BM cells (6 of 46, 13.0%). These formations contained calcifications and/or ossifications. In contrast, no pathological abnormalities were found after injection of purified hematopoietic progenitors (0 of 5, 0.0%), fibroblasts (0 of 5, 0.0%), vehicle only (0 of 30, 0.0%), or cytokine-induced mobilization of BM cells (0 of 35, 0.0%). We conclude that the developmental fate of BM-derived cells is not restricted by the surrounding tissue after myocardial infarction and that the MSC fraction underlies the extended bone formation in the infarcted myocardium. These findings seriously question the biologic basis and clinical safety of using whole BM and in particular MSCs to treat nonhematopoietic disorders.
  •  
3.
  • Buitenhuis, Miranda, et al. (författare)
  • Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 111:1, s. 112-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell production. An ex vivo differentiation system was used to investigate the role of PI3K and its downstream effector, protein kinase B (PKB/c-akt) in myelopoiesis. PI3K activity was essential for hematopoietic progenitor survival. High PKB activity was found to promote neutrophil and monocyte development, while, conversely, reduction of PKB activity was required to induce optimal eosinophil differentiation. In addition, transplantation of beta2-microglobulin (-/-) NOD/SCID mice with CD34(+) cells ectopically expressing constitutively active PKB resulted in enhanced neutrophil and monocyte development, whereas ectopic expression of dominant-negative PKB induced eosinophil development in vivo. Inhibitory phosphorylation of C/EBPalpha on Thr222/226 was abrogated upon PKB activation in hematopoietic progenitors. Ectopic expression of a nonphosphorylatable C/EBPalpha mutant inhibited eosinophil differentiation ex vivo, whereas neutrophil development was induced, demonstrating the importance of PKB-mediated C/EBPalpha phosphorylation in regulation of granulopoiesis. These results identify an important novel role for PKB in regulation of cell fate choices during hematopoietic lineage commitment.
  •  
4.
  • Kolossov, Eugen, et al. (författare)
  • Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium
  • 2006
  • Ingår i: Journal of Experimental Medicine. - New York, USA : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 203:10, s. 2315-2327
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)-derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6-10-fold because of induction of proliferation on purification. Long-term engraftment (4-5 months) was observed when co-transplanting selected ES cell-derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell-derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells.
  •  
5.
  • Ramsfjell, Veslemoy, et al. (författare)
  • Distinct requirements for optimal growth and In vitro expansion of human CD34(+)CD38(-) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells
  • 1999
  • Ingår i: Blood. - 1528-0020. ; 94:12, s. 4093-4102
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, primitive human bone marrow (BM) progenitors supporting hematopoiesis in extended (>60 days) long-term BM cultures were identified. Such extended long-term culture-initiating cells (ELTC-IC) are of the CD34(+)CD38(-) phenotype, are quiescent, and are difficult to recruit into proliferation, implicating ELTC-IC as the most primitive human progenitor cells detectable in vitro. However, it remains to be established whether ELTC-IC can proliferate and potentially expand in response to early acting cytokines. Here, CD34(+)CD38(-) BM ELTC-IC (12-week) were efficiently recruited into proliferation and expanded in vitro in response to early acting cytokines, but conditions for expansion of ELTC-IC activity were distinct from those of traditional (5-week) LTC-IC and murine long-term repopulating cells. Whereas c-kit ligand (KL), interleukin-3 (IL-3), and IL-6 promoted proliferation and maintenance or expansion of murine long-term reconstituting activity and human LTC-IC, they dramatically depleted ELTC-IC activity. In contrast, KL, flt3 ligand (FL), and megakaryocyte growth and development factor (MGDF) (and KL + FL + IL-3) expanded murine long-term reconstituting activity as well as human LTC-IC and ELTC-IC. Expansion of LTC-IC was most optimal after 7 days of culture, whereas optimal expansion of ELTC-IC activity required 12 days, most likely reflecting the delayed recruitment of quiescent CD34(+)CD38(-) progenitors. The need for high concentrations of KL, FL, and MGDF (250 ng/mL each) and serum-free conditions was more critical for expansion of ELTC-IC than of LTC-IC. The distinct requirements for expansion of ELTC-IC activity when compared with traditional LTC-IC suggest that the ELTC-IC could prove more reliable as a predictor for true human stem cell activity after in vitro stem cell manipulation.
  •  
6.
  • Woll, Petter S, et al. (författare)
  • Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.
  • 2014
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1878-3686 .- 1535-6108. ; 25:6, s. 794-808
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.
  •  
7.
  • Castor, Anders, et al. (författare)
  • Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia
  • 2005
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 11:6, s. 630-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The cellular targets of primary mutations and malignant transformation remain elusive in most cancers. Here, we show that clinically and genetically different subtypes of acute lymphoblastic leukemia (ALL) originate and transform at distinct stages of hematopoietic development. Primary ETV6-RUNX1 (also known as TEL-AML1) fusions and subsequent leukemic transformations were targeted to committed B-cell progenitors. Major breakpoint BCR-ABL1 fusions (encoding P210 BCR-ABL1) originated in hematopoietic stem cells (HSCs), whereas minor BCR-ABL1 fusions (encoding P190 BCR-ABL1) had a B-cell progenitor origin, suggesting that P190 and P210 BCR-ABL1 ALLs represent largely distinct tumor biological and clinical entities. The transformed leukemia-initiating stem cells in both P190 and P210 BCR-ABL1 ALLs had, as in ETV6-RUNX1 ALLs, a committed B progenitor phenotype. In all patients, normal and leukemic repopulating stem cells could successfully be separated prospectively, and notably, the size of the normal HSC compartment in ETV6-RUNX1 and P190 BCR-ABL1 ALLs was found to be unaffected by the expansive leukemic stem cell population.
  •  
8.
  • Sitnicka Quinn, Ewa, et al. (författare)
  • Complementary Signaling through flt3 and Interleukin-7 Receptor {alpha} Is Indispensable for Fetal and Adult B Cell Genesis.
  • 2003
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 198:10, s. 1495-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive studies of mice deficient in one or several cytokine receptors have failed to support an indispensable role of cytokines in development of multiple blood cell lineages. Whereas B1 B cells and Igs are sustained at normal levels throughout life of mice deficient in IL-7, IL-7R{alpha}, common cytokine receptor gamma chain, or flt3 ligand (FL), we report here that adult mice double deficient in IL-7R{alpha} and FL completely lack visible LNs, conventional IgM+ B cells, IgA+ plasma cells, and B1 cells, and consequently produce no Igs. All stages of committed B cell progenitors are undetectable in FL-/- x IL-7R{alpha}-/- BM that also lacks expression of the B cell commitment factor Pax5 and its direct target genes. Furthermore, in contrast to IL-7R{alpha}-/- mice, FL-/- x IL-7R{alpha}-/- mice also lack mature B cells and detectable committed B cell progenitors during fetal development. Thus, signaling through the cytokine tyrosine kinase receptor flt3 and IL-7R{alpha} are indispensable for fetal and adult B cell development.
  •  
9.
  • Böiers, Charlotta, et al. (författare)
  • Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.
  • 2013
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 13:5, s. 535-548
  • Tidskriftsartikel (refereegranskat)abstract
    • In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.
  •  
10.
  • Nygren, Jens Martin, 1976-, et al. (författare)
  • Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation
  • 2004
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 10:5, s. 494-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have suggested that bone marrow cells might possess a much broader differentiation potential than previously appreciated. In most cases, the reported efficiency of such plasticity has been rather low and, at least in some instances, is a consequence of cell fusion. After myocardial infarction, however, bone marrow cells have been suggested to extensively regenerate cardiomyocytes through transdifferentiation. Although bone marrow-derived cells are already being used in clinical trials, the exact identity, longevity and fate of these cells in infarcted myocardium have yet to be investigated in detail. Here we use various approaches to induce acute myocardial injury and deliver transgenically marked bone marrow cells to the injured myocardium. We show that unfractionated bone marrow cells and a purified population of hematopoietic stem and progenitor cells efficiently engraft within the infarcted myocardium. Engraftment was transient, however, and hematopoietic in nature. In contrast, bone marrow-derived cardiomyocytes were observed outside the infarcted myocardium at a low frequency and were derived exclusively through cell fusion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 91
Typ av publikation
tidskriftsartikel (86)
konferensbidrag (5)
Typ av innehåll
refereegranskat (91)
Författare/redaktör
Jacobsen, Sten Eirik ... (91)
Sitnicka Quinn, Ewa (21)
Bryder, David (20)
Buza-Vidas, Natalija (18)
Anderson, Kristina (14)
Jensen, Christina (12)
visa fler...
Nerlov, Claus (12)
Nygren, Jens Martin, ... (11)
Luc, Sidinh (11)
Nilsson, Lars (10)
Månsson, Robert (10)
Kharazi, Shabnam (10)
Böiers, Charlotta (9)
Cheng, Min (9)
Hultquist, Anne (7)
Liuba, Karina (7)
Sasaki, Yutaka (7)
Johansson, Bertil (6)
Adolfsson, Jörgen (6)
Åstrand-Grundström, ... (6)
Wittmann, Lilian (6)
Ma, Zhi (6)
Castor, Anders (6)
Hellström-Lindberg, ... (5)
Enver, Tariq (5)
Sigvardsson, Mikael (5)
Sigvardsson, Mikael, ... (5)
Dybedal, Ingunn (5)
Duarte, Sara (5)
Yang, Liping (4)
Thorén, Lina (4)
Ahlenius, Henrik (4)
Strömbeck, Bodil (4)
Breitbach, Martin (4)
Fleischmann, Bernd K (4)
Jovinge, Stefan (3)
Cilio, Corrado (3)
Agace, William (3)
Kokaia, Zaal (3)
Lindvall, Olle (3)
Taneera, Jalal (3)
Sandberg, Rickard (3)
Karlsson, Stefan (3)
Pronk, Kees-Jan (3)
Azzoni, Emanuele (3)
de Bruijn, Marella F ... (3)
Cammenga, Jörg (3)
Svensson Frej, Marcu ... (3)
Roell, Wilhelm (3)
Hast, Robert (3)
visa färre...
Lärosäte
Lunds universitet (89)
Karolinska Institutet (21)
Högskolan i Halmstad (11)
Linköpings universitet (11)
Umeå universitet (2)
Kungliga Tekniska Högskolan (2)
visa fler...
Uppsala universitet (2)
Örebro universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (90)
Norska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy