SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsen Sten Eirik W) ;pers:(Bryder David)"

Sökning: WFRF:(Jacobsen Sten Eirik W) > Bryder David

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ramsfjell, Veslemoy, et al. (författare)
  • Distinct requirements for optimal growth and In vitro expansion of human CD34(+)CD38(-) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells
  • 1999
  • Ingår i: Blood. - 1528-0020. ; 94:12, s. 4093-4102
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, primitive human bone marrow (BM) progenitors supporting hematopoiesis in extended (>60 days) long-term BM cultures were identified. Such extended long-term culture-initiating cells (ELTC-IC) are of the CD34(+)CD38(-) phenotype, are quiescent, and are difficult to recruit into proliferation, implicating ELTC-IC as the most primitive human progenitor cells detectable in vitro. However, it remains to be established whether ELTC-IC can proliferate and potentially expand in response to early acting cytokines. Here, CD34(+)CD38(-) BM ELTC-IC (12-week) were efficiently recruited into proliferation and expanded in vitro in response to early acting cytokines, but conditions for expansion of ELTC-IC activity were distinct from those of traditional (5-week) LTC-IC and murine long-term repopulating cells. Whereas c-kit ligand (KL), interleukin-3 (IL-3), and IL-6 promoted proliferation and maintenance or expansion of murine long-term reconstituting activity and human LTC-IC, they dramatically depleted ELTC-IC activity. In contrast, KL, flt3 ligand (FL), and megakaryocyte growth and development factor (MGDF) (and KL + FL + IL-3) expanded murine long-term reconstituting activity as well as human LTC-IC and ELTC-IC. Expansion of LTC-IC was most optimal after 7 days of culture, whereas optimal expansion of ELTC-IC activity required 12 days, most likely reflecting the delayed recruitment of quiescent CD34(+)CD38(-) progenitors. The need for high concentrations of KL, FL, and MGDF (250 ng/mL each) and serum-free conditions was more critical for expansion of ELTC-IC than of LTC-IC. The distinct requirements for expansion of ELTC-IC activity when compared with traditional LTC-IC suggest that the ELTC-IC could prove more reliable as a predictor for true human stem cell activity after in vitro stem cell manipulation.
  •  
2.
  • Adolfsson, Jörgen, et al. (författare)
  • Identification of Flt3(+) lympho-myeloid stem cells lacking erythro-megakaryocytic potential: A revised road map for adult blood lineage commitment
  • 2005
  • Ingår i: Cell. - : Elsevier (Cell Press). - 0092-8674 .- 1097-4172. ; 121:2, s. 295-306
  • Tidskriftsartikel (refereegranskat)abstract
    • All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1(+)ckit(+)Flt3(-) HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin(-)Sca-l(+)c-kit(+)CD34(+)Flt3(+) cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.
  •  
3.
  • Adolfsson, Jörgen, et al. (författare)
  • Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity
  • 2001
  • Ingår i: Immunity. - 1074-7613. ; 15:4, s. 659-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.
  •  
4.
  • Bereshchenko, Oxana, et al. (författare)
  • Hematopoietic Stem Cell Expansion Precedes the Generation of Committed Myeloid Leukemia-initiating Cells in C/EBP alpha Mutant AML
  • 2009
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1878-3686 .- 1535-6108. ; 16:5, s. 390-400
  • Tidskriftsartikel (refereegranskat)abstract
    • We here use knockin mutagenesis in the mouse to model the spectrum of acquired CEBPA mutations in human acute myeloid leukemia. We find that C-terminal C/EBP alpha mutations increase the proliferation of long-term hematopoietic stem cells (LT-HSCs) in a cell-intrinsic manner and override normal HSC homeostasis, leading to expansion of premalignant HSCs. However, such mutations impair myeloid programming of HSCs and block myeloid lineage commitment when homozygous. In contrast, N-terminal C/EBP alpha mutations are silent with regards to HSC expansion, but allow the formation of committed myeloid progenitors, the templates for leukemia-initiating cells. The combination of N- and C-terminal C/EBP alpha mutations incorporates both features, accelerating disease development and explaining the clinical prevalence of this configuration of CEBPA mutations.
  •  
5.
  • Björgvinsdottir, Helga, et al. (författare)
  • Efficient Oncoretroviral Transduction of Extended Long-Term Culture-Initiating Cells and NOD/SCID Repopulating Cells: Enhanced Reconstitution with Gene-Marked Cells Through an Ex Vivo Expansion Approach.
  • 2002
  • Ingår i: Human Gene Therapy. - 1043-0342. ; 13:9, s. 1061-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments of surrogate assays for human hematopoietic stem cells (HSC) have facilitated efforts at improving HSC gene transfer efficiency. Through the use of xenograft transplantation models, such as nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, successful oncoretroviral gene transfer to transplantable hematopoietic cells has been achieved. However, because of the low frequency and/or homing efficiency of SCID repopulating cells (SRC) in bone marrow (BM), studies have primarily focused on cord blood (CB). The recently developed extended (> 60 days) long-term culture-initiating cell (ELTC-IC) assay detects an infrequent and highly quiescent candidate stem cell population in BM as well as CB of the CD34(+)CD38(-) phenotype. Although these characteristics suggest that ELTC-IC and SRC might be closely related, attempts to oncoretrovirally transduce ELTC-IC have been unsuccessful. Here, recently developed conditions (high concentrations of SCF + FL + Tpo in serum-free medium) supporting expansion of BM CD34(+)CD38(-) 12 week ELTC-IC promoted efficient oncoretroviral transduction of BM and CB ELTC-IC. Although SRC can be transduced with oncoretroviral vectors, this is frequently associated with loss of reconstituting activity, posing a problem for development of clinical HSC gene therapy. However, previous attempts at expanding transduced HSC posttransduction resulted in compromised rather than improved gene marking. Utilizing conditions promoting cell divisions and transduction of ELTC-IC we show that although 5 days of ex vivo culture is sufficient to obtain maximum gene transfer efficiency to SRC, extension of the expansion period to 12 days significantly enhances multilineage reconstitution activity of transduced SRC, supporting the feasibility of improving gene marking through ex vivo expansion.
  •  
6.
  •  
7.
  • Bryder, David, et al. (författare)
  • Deficiency of oncoretrovirally transduced hematopoietic stem cells and correction through ex vivo expansion.
  • 2005
  • Ingår i: Journal of Gene Medicine. - : Wiley. - 1521-2254 .- 1099-498X. ; 7:2, s. 137-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. Methods The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. Results We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. Conclusions These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.
  •  
8.
  • Bryder, David, et al. (författare)
  • Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro
  • 2000
  • Ingår i: Blood. - 1528-0020. ; 96:5, s. 1748-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin(-)Sca-1(+)kit(+) bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3. (Blood. 2000;96:1748-1755)
  •  
9.
  • Bryder, David, et al. (författare)
  • Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation
  • 2001
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 194:7, s. 941-952
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.
  •  
10.
  • Dybedal, Ingunn, et al. (författare)
  • Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells
  • 2001
  • Ingår i: Blood. - 1528-0020. ; 98:6, s. 1782-1791
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cell (HSC) fate decisions between self-renewal and commitment toward differentiation are tightly regulated in vivo. Recent developments in HSC culture and improvements of human HSC assays have facilitated studies of these processes in vitro. Through such studies stimulatory cytokines critically involved in HSC maintenance in vivo have been demonstrated to also promote HSC self-renewing divisions in vitro. Evidence for negative regulators of HSC self-renewal is, however, lacking. Tumor necrosis factor (TNF), if overexpressed, has been implicated to mediate bone marrow suppression. However, whether and how TNF might affect the function of HSC with a combined myeloid and lymphoid reconstitution potential has not been investigated. In the present studies in vitro conditions recently demonstrated to promote HSC self-renewing divisions in vitro were used to study the effect of TNF on human HSCs capable of reconstituting myelopoiesis and lymphopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Although all cord blood and adult bone marrow CD34(+)CD38(-) cells were capable of undergoing cell divisions in the presence of TNF, cycling HSCs exposed to TNF in vitro and in vivo were severely compromised in their ability to reconstitute NOD-SCID mice and long-term cultures. The negative effect of TNF was not dependent on the Fas pathway, and a similar effect could be observed using a mutant TNF exclusively targeting the p55 TNF receptor. TNF did not appear to enhance apoptosis or affect cell-cycle distribution of cultured progenitors, but rather promoted myeloid differentiation. Thus, TNF might regulate HSC fate by promoting their differentiation rather than self-renewal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy