Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jahn Reinhard) "

Sökning: WFRF:(Jahn Reinhard)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
  • Farsi, Zohreh, et al. (författare)
  • Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity
  • 2018
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.
  • Juranek, Judyta Karolina, et al. (författare)
  • Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat
  • 2013
  • Ingår i: Acta Histochemica. - : Elsevier. - 0065-1281. ; 115:6, s. 616-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Signal transduction and neurotransmitter release in the vertebrate central nervous system are confined to the structurally complex presynaptic electron dense projections called "active zones." Although the nature of these projections remains a mystery, genetic and biochemical work has provided evidence for the active zone (AZ) associated proteins i.e. Piccolo/Aczonin, Bassoon, RIM1/Unc10, Munc13/Unc13, Liprin-alpha/SYD2/Dliprin and ELKS/CAST/BRP and their specific molecular functions. It still remains unclear, however, what their precise contribution is to the AZ assembly. In our project, we studied in Wistar rats the temporal and spatial distribution of AZ proteins and their colocalization with Synaptophysin in the developing cerebellar cortex at key stages of cerebellum neurogenesis. Our study demonstrated that AZ proteins were already present at the very early stages of cerebellar neurogenesis and exhibited distinct spatial and temporal variations in immunoexpression throughout the course of the study. Colocalization analysis revealed that the colocalization pattern was time-dependent and different for each studied protein. The highest collective mean percentage of colocalization (>85%) was observed at postnatal day (PD) 5, followed by PD10 (>83%) and PD15 (>80%). The findings of our study shed light on AZ protein immunoexpression changes during cerebellar cortex neurogenesis and help frame a hypothetical model of AZ assembly. (C) 2013 Elsevier GmbH. All rights reserved.
  • Juranek, Judyta K., et al. (författare)
  • Coordinated bi-directional trafficking of synaptic vesicle and active zone proteins in peripheral nerves
  • 2021
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier. - 0006-291X. ; 559, s. 92-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles (SV) and released at the synaptic active zone (AZ). While in recent years major progress has been made in unraveling the molecular machinery responsible for SV docking, fusion and exocytosis, the mechanisms governing AZ protein and SV trafficking through axons still remain unclear. Here, we performed stop-flow nerve ligation to examine axonal trafficking of endogenous AZ and SV proteins. Rat sciatic nerves were collected 1 h, 3 h and 8 h post ligation and processed for immunohistochemistry and electron microscopy. First, we followed the transport of an integral synaptic vesicle protein, SV2A and a SV-associated protein involved in SV trafficking, Rab3a, and observed that while SV2A accumulated on both sides of ligation, Rab3a was only noticeable in the proximal segment of the ligated nerve indicating that only SV trans-membrane protein SV2A displayed a bi-directional axonal transport. We then demonstrate that multiple AZ proteins accumulate rapidly on either side of the ligation with a timescale similar to that of SV2A. Overall, our data uncovers an unexpected robust bi-directional, coordinated -trafficking of SV and AZ proteins in peripheral nerves. This implies that pathological disruption of axonal trafficking will not only impair trafficking of newly synthesized proteins to the synapse but will also affect retrograde transport, leading to neuronal dysfunction and likely neurodegeneration.
  • Larhammar, Martin, et al. (författare)
  • SLC10A4 Is a Vesicular Amine-Associated Transporter Modulating Dopamine Homeostasis
  • 2015
  • Ingår i: Biological Psychiatry. - 0006-3223 .- 1873-2402. ; 77:6, s. 526-536
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The neuromodulatory transmitters, biogenic amines, have profound effects on multiple neurons and are essential for normal behavior and mental health. Here we report that the orphan transporter SLC10A4, which in the brain is exclusively expressed in presynaptic vesicles of monoaminergic and cholinergic neurons, has a regulatory role in dopamine homeostasis. METHODS: We used a combination of molecular and behavioral analyses, pharmacology, and in vivo amperometry to assess the role of SLC10A4 in dopamine- regulated behaviors. RESULTS: We show that SLC10A4 is localized on the same synaptic vesicles as either vesicular acetylcholine transporter or vesicular monoamine transporter 2. We did not find evidence for direct transport of dopamine by SLC10A4; however, synaptic vesicle preparations lacking SLC10A4 showed decreased dopamine vesicular uptake efficiency. Furthermore, we observed an increased acidification in synaptic vesicles isolated from mice over-expressing SLC10A4. Loss of SLC10A4 in mice resulted in reduced striatal serotonin, noradrenaline, and dopamine concentrations and a significantly higher dopamine turnover ratio. Absence of SLC10A4 led to slower dopamine clearance rates in vivo, which resulted in accumulation of extracellular dopamine. Finally, whereas SLC10A4 null mutant mice were slightly hypoactive, they displayed hypersensitivity to administration of amphetamine and tranylcypromine. CONCLUSIONS: Our results demonstrate that SLC10A4 is a vesicular monoaminergic and cholinergic associated transporter that is important for dopamine homeostasis and neuromodulation in vivo. The discovery of SLC10A4 and its role in dopaminergic signaling reveals a novel mechanism for neuromodulation and represents an unexplored target for the treatment of neurological and mental disorders.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy