SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansson Johan) ;pers:(Eeg Olofsson Måns 1967)"

Sökning: WFRF:(Jansson Johan) > Eeg Olofsson Måns 1967

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eeg-Olofsson, Måns, 1967, et al. (författare)
  • BCI-bone conduction implant.
  • 2013
  • Ingår i: The Fourth International Symposium on Bone Conduction Hearing – Craniofacial Osseointegration. Newcastle, UK.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Eeg-Olofsson, Måns, 1967, et al. (författare)
  • Evaluation of bone tissue formation in a flat surface attachment of a Bone Conduction Implant - A pilot study in a sheep model
  • 2014
  • Ingår i: Audiology & Neurotology Extra. - : S. Karger AG. - 1664-5537. ; 4:3, s. 62-76
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bone Conduction Implant (BCI) is a new bone conduction hearing device implanted under intact skin. The transducer has a flat direct contact to the mastoid part of the temporal bone and no screws are used. The sound signal is transmitted from the external audio processor to the implant by means of magnetic induction. In this study, osseointegration of a flat passive BCI transducer dummy in sheep skulls was assessed using quantitative and qualitative histology as well as Cone Beam Computed Tomography (CBCT) and Computed Tomography (CT). The histology results were also related to the mechanical properties of the bone to implant interface. Eight months after the surgical implantation, histology sections of the bone close to the implant showed bone remodelling, compact bone and some degree of osseointegration. The histological findings corresponded well to the mechanical measurements indicating stiffer bone close to the implant, and unaffected skull vibration transmission. Neither CBCT nor CT had enough resolution to visualize the bone to implant interface in detail. In this study, using an animal model, it is shown that a flat implant in contact with bone, can be a feasible method for efficient vibration transmission to the skull bone.
  •  
3.
  •  
4.
  • Fredén Jansson, Karl-Johan, 1988, et al. (författare)
  • Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla.
  • 2015
  • Ingår i: Medical devices (Auckland, N.Z.). - 1179-1470. ; 8, s. 413-23
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated.
  •  
5.
  • Fredén Jansson, Karl-Johan, 1988, et al. (författare)
  • MRI Induced Torque and Demagnetization in Retention Magnets for a Bone Conduction Implant
  • 2014
  • Ingår i: IEEE Transactions on Biomedical Engineering. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9294 .- 1558-2531. ; 61:6, s. 1887-1893
  • Tidskriftsartikel (refereegranskat)abstract
    • Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% +/- 2.5% and 0.20 +/- 0.01 Nm, respectively and 71.4% +/- 19.1% and 0.18 +/- 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.
  •  
6.
  • Fredén Jansson, Karl-Johan, 1988, et al. (författare)
  • Robustness and lifetime of the bone conduction implant - a pilot study
  • 2019
  • Ingår i: Medical Devices: Evidence and Research. - 1179-1470. ; 12, s. 89-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: The objective of this study was to develop methods for evaluating the mechanical robustness and estimating the lifetime of the novel bone conduction implant (BCI) that is used in a clinical study. The methods are intended to be applicable to any similar device. Materials and methods: The robustness was evaluated using tests originally developed for cochlear implants comprising a random vibration test, a shock test, a pendulum test, and an impact test. Furthermore, magnetically induced torque and demagnetization during magnetic resonance imaging at 1.5 T were investigated using a dipole electromagnet. To estimate the lifetime of the implant, a long-term age-accelerated test was performed. Results: Out of all the tests, the pendulum and the impact tests had the largest effect on the electro-acoustic performance of the BCI implant, even if the change in performance was within acceptable limits (< 20%). In comparison with baseline data, the lower and higher resonance peaks shifted down in frequency by 13% and 18%, respectively, and with a loss in magnitude of 1.1 and 2.0 dB, respectively, in these tests. Conclusion: A complete series of tests were developed, and the BCI passed all the tests; its lifetime was estimated to be at least 26 years for patients who are using the implant for 12 hours on a daily basis.
  •  
7.
  • Håkansson, Bo, 1953, et al. (författare)
  • The bone conduction implant - a review and 1-year follow-up
  • 2019
  • Ingår i: International Journal of Audiology. - : Informa UK Limited. - 1499-2027 .- 1708-8186. ; 58:12, s. 945-955
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The objective of this study is to evaluate its safety and effectiveness of the bone conduction implant (BCI) having an implanted transducer and to review similar bone conduction devices. Design: This is a consecutive prospective case series study where the patients were evaluated after 1, 3, 6 and 12 months. Outcome measures were focussed on intraoperative and postoperative safety, the effectiveness of the device in terms of audiological performance and patient's experience. Study sample: Sixteen patients with average age of 40.2 (range 18-74) years have been included. Thirteen patients were operated in Gothenburg and three in Stockholm. Results: It was found that the procedure for installing the BCI is safe and the transmission condition was stable over the follow-up time. No serious adverse events or severe adverse device effects occurred. The hearing sensitivity, speech in noise and the self-assessment as compared with the unaided condition improved significantly with the BCI. These patients also performed similar or better than with a conventional bone conduction reference device on a softband. Conclusions: In summary, it was found that the BCI can provide a safe and effective hearing rehabilitation alternative for patients with mild-to-moderate conductive or mixed hearing impairments.
  •  
8.
  • Persson, Ann-Charlotte, 1970, et al. (författare)
  • A novel method for objective in-situ measurement of audibility in bone conduction hearing devices - a pilot study using a skin drive BCD
  • 2023
  • Ingår i: International Journal of Audiology. - : Informa UK Limited. - 1499-2027 .- 1708-8186. ; 62:4, s. 357-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Objective measurement of audibility (verification) using bone conduction devices (BCDs) has long remained an elusive problem for BCDs. For air conduction hearing aids there are well-defined and often used objective methods, and the aim of this study is to develop an objective method for BCDs. Design In a novel setup for audibility measurements of bone-anchored hearing aid (BAHA) attached via a soft band, we used a skin microphone (SM) on the forehead measuring in-situ sound field thresholds, maximum power output (MPO) and international speech test signal (ISTS) responses. Study sample Five normal-hearing persons. Result Using the electrical output of SM it was possible to objectively measure the audibility of a skin drive BCD, presented as an eSPL-o-gram showing thresholds, MPO and ISTS response. Normalised eSPL-o-gram was verified against corresponding FL-o-grams (corresponding force levels from skull simulator and artificial mastoid (AM)). Conclusion The proposed method with the SM can be used for objective measurements of the audibility of any BCDs based on thresholds, MPO and speech response allowing for direct comparisons of hearing and BCD output on the same graph using an eSPL-o-gram. After normalisation to hearing thresholds, the audibility can be assessed without the need for complicated calibration procedures.
  •  
9.
  • Persson, Ann-Charlotte, 1970, et al. (författare)
  • Objective verification of audibility in bone conduction devices
  • 2024
  • Ingår i: International Journal of Audiology. - 1499-2027 .- 1708-8186.
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To objectively measure audibility in patients wearing bone conduction devices (BCDs) with a new approach using a skin microphone at the patient’s forehead. Design: The skin microphone was attached by a softband and shielded by an earmuff. This set-up was confirmed not to be influenced by neither noise floor nor sound bypassing the BCD. Sound field warble tones were used for measuring aided hearing thresholds and maximum power output (MPO) whereas an international speech test signal (ISTS) was presented at different speech levels. Study sample: 29 patients were tested (two were bilateral), 19 used percutaneous, eight used active transcutaneous and two used passive transcutaneous devices. Results: The skin microphone responses at ISTS levels, hearing threshold and MPO, could be obtained in all patients. Two patients with poor audibility are highlighted in this article as examples. After adjusting the gain of the BCD, they were retested with the skin microphone (for verification) and with speech-in-noise tests (for validation). Both tests confirmed an improved audibility after the adjustments. Conclusion: In summary, the proposed measurement of audibility of speech using a skin microphone is a promising method that can be used in a clinical setting for all types of BCDs.
  •  
10.
  • Persson, Ann-Charlotte, 1970, et al. (författare)
  • Three-Year Follow-Up with the Bone Conduction Implant
  • 2020
  • Ingår i: Audiology and Neuro-Otology. - : S. Karger AG. - 1421-9700 .- 1420-3030. ; 25:5, s. 263-275
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The bone conduction implant (BCI) is an active transcutaneous bone conduction device where the transducer has direct contact to the bone, and the skin is intact. Sixteen patients have been implanted with the BCI with a planned follow-up of 5 years. This study reports on hearing, quality of life, and objective measures up to 36 months of follow-up in 10 patients. Method: Repeated measures were performed at fitting and after 1, 3, 6, 12, and 36 months including sound field warble tone thresholds, speech recognition thresholds in quiet, speech recognition score in noise, and speech-to-noise thresholds for 50% correct words with adaptive noise. Three quality of life questionnaires were used to capture the benefit from the intervention, appreciation from different listening situations, and the ability to interact with other people when using the BCI. The results were compared to the unaided situation and a Ponto Pro Power on a soft band. The implant functionality was measured by nasal sound pressure, and the retention force from the audio processor against the skin was measured using a specially designed audio processor and a force gauge. Results: Audiometry and quality of life questionnaires using the BCI or the Ponto Pro Power on a soft band were significantly improved compared to the unaided situation and the results were statistically supported. There was generally no significant difference between the two devices. The nasal sound pressure remained stable over the study period and the force on the skin from the audio processor was 0.71 ± 0.22 N (mean ± 1 SD). Conclusion: The BCI improves the hearing ability for tones and speech perception in quiet and in noise for the indicated patients. The results are stable over a 3-year period, and the patients subjectively report a beneficial experience from using the BCI. The transducer performance and contact to the bone is unchanged over time, and the skin area under the audio processor remains without complications during the 3-year follow-up.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy