SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansson Johan) srt2:(2015-2019);lar1:(his)"

Sökning: WFRF:(Jansson Johan) > (2015-2019) > Högskolan i Skövde

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fagman, Johan Bourghardt, 1980, et al. (författare)
  • The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice.
  • 2015
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - : Wiley. - 1530-6860 .- 0892-6638. ; 29:4, s. 1540-1550
  • Tidskriftsartikel (refereegranskat)abstract
    • Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)-dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)-deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs. control apoE-deficient mice with intact AR gene). They also displayed increased body weight (+18%), body fat percentage (+62%), and hepatic triglyceride levels, reduced insulin sensitivity, and a marked atherogenic dyslipidemia (serum cholesterol, +52%). Differences in atherosclerosis, body weight, and lipid levels between ARKO and control mice were abolished in mice that were ovariectomized before puberty, consistent with a protective action of ovarian androgens mediated via the AR. Furthermore, the AR agonist dihydrotestosterone reduced atherosclerosis (-41%; thoracic aorta), subcutaneous fat mass (-44%), and cholesterol levels (-35%) in ovariectomized mice, reduced hepatocyte lipid accumulation in hepatoma cells in vitro, and regulated mRNA expression of hepatic genes pivotal for lipid homeostasis. In conclusion, we demonstrate that the AR protects against diet-induced atherosclerosis in female mice and propose that this is mediated by modulation of body composition and lipid metabolism.-Fagman, J. B., Wilhelmson, A. S., Motta, B. M., Pirazzi, C., Alexanderson, C., De Gendt, K., Verhoeven, G., Holmäng, A., Anesten, F., Jansson, J. -O., Levin, M., Borén, J., Ohlsson, C., Krettek, A., Romeo, S., Tivesten, A. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice.
  •  
2.
  • Jansson, Johan, et al. (författare)
  • An anisotropic non-linear material model for glass fibre reinforced plastics
  • 2018
  • Ingår i: Composite structures. - : Elsevier. - 0263-8223 .- 1879-1085. ; 195, s. 93-98
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper aims to present a methodology to predict the anisotropic and non-linear behaviour of glass fibre reinforced plastics using finite element methods. A material model is implemented in order to remedy the need of multiple material definitions, and to control the local plastic behaviour as a function of the fibre orientation. Injection moulding simulations traditionally provide second order orientation tensors, which are considered together with a homogenization scheme to compute local material properties. However, in the present study, fourth order tensors are used in combination with traditional methods to provide more accurate material properties. The elastic and plastic response of the material model is optimized to fit experimental test data, until simulations and experiments overlap. The proposed material model can support design engineers in making more informed decisions, allowing them to create smarter products without the need of excessive safety factors, leading to reduced component weight and environmental impact. 
  •  
3.
  • Jansson, Johan, et al. (författare)
  • On the use of heterogeneous thermomechanical and thermophysical material properties in finite element analyses of cast components
  • 2019
  • Ingår i: Joint 5th International Conference on Advances in Solidification Processes (ICASP-5) & 5th International Symposium on Cutting Edge of Computer Simulation of Solidification, Casting and Refining (CSSCR-5) 17–21 June 2019, Salzburg, Austria. - : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • Cast components generally show a heterogeneous distribution of material properties, caused by variations in the microstructure that forms during solidification. Variations caused by the casting process are not commonly considered in structural analyses, which might result in manufacturing of sub-optimised components with unexpected in-use behaviour. In this paper, we present a methodology which can be used to consider both thermomechanical and thermophysical variations using finite element analyses in cast components. The methodology is based on process simulations including microstructure modelling and correlations between microstructural features and material properties. Local material data are generated from the process simulation results, which are integrated into subsequent structural analyses. In order to demonstrate the methodology, it is applied to a cast iron cylinder head. The heterogeneous distribution of material properties in this component is investigated using experimental methods, demonstrating local variations in both mechanical and physical behaviour. In addition, the strength-differential effect on tensile and compressive behaviour of cast iron is considered in the modelling. The integrated simulation methodology presented in this work is relevant to both design engineers, production engineers as well as material scientists, in order to study and better understand how local variations in microstructure might influence the performance and behaviour of cast components under in-use conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy