SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansson John Olov 1954) "

Sökning: WFRF:(Jansson John Olov 1954)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Justice, A. E., et al. (författare)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
  •  
2.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.
  • 2010
  • Ingår i: Nature genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 42:11, s. 949-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10(-9) to P = 1.8 × 10(-40)) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10(-3) to P = 1.2 × 10(-13)). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
3.
  • Graff, M., et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - : Public library service. - 1553-7404 .- 1553-7390. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  •  
4.
  •  
5.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
6.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.
  • 2011
  • Ingår i: PLoS medicine. - : Public Library of Science. - 1549-1676 .- 1549-1277. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction)  = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio  = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio  = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
  •  
7.
  • Teumer, A., et al. (författare)
  • Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits
  • 2016
  • Ingår i: Aging Cell. - : Wiley-Blackwell. - 1474-9718 .- 1474-9726. ; 15:5, s. 811-824
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF-I and IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype–phenotype associations between men and women, were found only for associations of IGFBP-3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF-I and IGFBP-3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity-associated loci. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
  •  
8.
  • Andersson, Niklas, 1970, et al. (författare)
  • A variant near the interleukin-6 gene is associated with fat mass in Caucasian men
  • 2010
  • Ingår i: International Journal of Obesity. - : Nature Publishing Group. - 0307-0565 .- 1476-5497. ; 34:6, s. 1011-9
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Regulation of fat mass appears to be associated with immune functions. Studies of knockout mice show that endogenous interleukin (IL)-6 can suppress mature-onset obesity. OBJECTIVE: To systematically investigate associations of single nucleotide polymorphisms (SNPs) near the IL-6 (IL6) and IL-6 receptor (IL6R) genes with body fat mass, in support for our hypothesis that variants of these genes can be associated with obesity. DESIGN AND STUDY SUBJECTS: The Gothenburg Osteoporosis and Obesity Determinants (GOOD) study is a population-based cross-sectional study of 18- to 20-year-old men (n=1049), from the Gothenburg area (Sweden). Major findings were confirmed in two additional cohorts consisting of elderly men from the Osteoporotic Fractures in Men (MrOS) Sweden (n=2851) and MrOS US (n=5611) multicenter population-based studies. MAIN OUTCOME: The genotype distributions and their association with fat mass in different compartments, measured with dual-energy X-ray absorptiometry. RESULTS: Out of 18 evaluated tag SNPs near the IL6 and IL6R genes, a recently identified SNP rs10242595 G/A (minor allele frequency=29%) 3' of the IL6 gene was negatively associated with the primary outcome total body fat mass (effect size -0.11 standard deviation (s.d.) units per A allele, P=0.02). This negative association with fat mass was also confirmed in the combined MrOS Sweden and MrOS US cohorts (effect size -0.05 s.d. units per A allele, P=0.002). When all three cohorts were combined (n=8927, Caucasian subjects), rs10242595(*)A showed a negative association with total body fat mass (effect size -0.05 s.d. units per A allele, P<0.0002). Furthermore, the rs10242595(*)A was associated with low body mass index (effect size -0.03, P<0.001) and smaller regional fat masses. None of the other SNPs investigated in the GOOD study were reproducibly associated with body fat. CONCLUSIONS: The IL6 gene polymorphism rs10242595(*)A is associated with decreased fat mass in three combined cohorts of 8927 Caucasian men.
  •  
9.
  • Andersson, Niklas, 1970, et al. (författare)
  • Variants of the interleukin-1 receptor antagonist gene are associated with fat mass in men.
  • 2009
  • Ingår i: International journal of obesity (2005). - : Nature Publishing Group. - 1476-5497 .- 0307-0565. ; 33:5, s. 525-533
  • Tidskriftsartikel (refereegranskat)abstract
    • Context:Immune functions seem to have connections to variations in body fat mass. Studies of knockout mice indicate that endogenous interleukin (IL)-1 can suppress mature-onset obesity.Objective:To systematically investigate our hypotheses that single-nucleotide polymorphisms (SNPs) and/or haplotypes variants in the IL-1 gene system are associated with fat mass.Subjects:The Gothenburg osteoporosis and obesity determinants (GOOD) study is a population-based cross-sectional study of 18-20 year-old men (n=1068), from Gothenburg, Sweden. Major findings were confirmed in elderly men (n=3014) from the Swedish part of the osteoporotic fractures in men (MrOS) multicenter population-based study.Main Outcome Measure:The genotype distributions and their association with body fat mass in different compartments, measured with dual-energy X-ray absorptiometry (DXA).Results:Out of 15 investigated SNPs in the IL-1 receptor antagonist (IL1RN) gene, a recently identified 3' untranslated region C>T (rs4252041, minor allele frequency=4%) SNP was associated with the primary outcome total fat mass (P=0.003) and regional fat masses, but not with lean body mass or serum IL-1 receptor 1 (IL1RN) levels. This SNP was also associated with body fat when correcting the earlier reported IL1RN+2018 T>C (rs419598) SNP (in linkage disequilibrium with a well-studied variable number tandem repeat of 86 bp). The association between rs4252041 SNP and body fat was confirmed in the older MrOS population (P=0.03). The rs4252041 SNP was part of three haplotypes consisting of five adjacent SNPs that were identified by a sliding window approach. These haplotypes had a highly significant global association with total body fat (P<0.001). None of the other investigated members of the IL-1 gene family displayed any SNPs that have not been described previously to be significantly associated with body fat.Conclusions:The IL1RN gene, shown to enhance obesity by suppressing IL-1 effects in experimental animals, have no previously described gene polymorphisms and haplotypes that are associated with fat, but not lean mass in two populations of men.International Journal of Obesity advance online publication, 17 March 2009; doi:10.1038/ijo.2009.47.
  •  
10.
  • Coviello, Andrea D, et al. (författare)
  • A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science. - 1553-7404 .- 1553-7390. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10(-106)), PRMT6 (rs17496332, 1p13.3, p = 1.4×10(-11)), GCKR (rs780093, 2p23.3, p = 2.2×10(-16)), ZBTB10 (rs440837, 8q21.13, p = 3.4×10(-09)), JMJD1C (rs7910927, 10q21.3, p = 6.1×10(-35)), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10(-08)), NR2F2 (rs8023580, 15q26.2, p = 8.3×10(-12)), ZNF652 (rs2411984, 17q21.32, p = 3.5×10(-14)), TDGF3 (rs1573036, Xq22.3, p = 4.1×10(-14)), LHCGR (rs10454142, 2p16.3, p = 1.3×10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10(-08)), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10(-08), women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (99)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (99)
övrigt vetenskapligt (2)
Författare/redaktör
Jansson, John-Olov, ... (101)
Ohlsson, Claes, 1965 (59)
Harris, Tamara B (19)
Ohlsson, C. (17)
Sjögren, Klara, 1970 (17)
Uitterlinden, Andre ... (16)
visa fler...
Palsdottir, Vilborg, ... (16)
Van Duijn, Cornelia ... (14)
Dickson, Suzanne L., ... (14)
Wareham, Nicholas J (14)
Feitosa, Mary F. (14)
Lorentzon, Mattias, ... (14)
Jansson, JO (14)
Loos, Ruth J F (14)
Hofman, Albert (12)
Mellström, Dan, 1945 (12)
Svensson, Johan, 196 ... (12)
Anesten, Fredrik (12)
Psaty, Bruce M. (11)
Wilson, James F. (11)
Grahnemo, Louise (11)
Schéle, Erik, 1980 (11)
Karlsson, Magnus (10)
Amin, N (10)
Gudnason, Vilmundur (10)
Gudnason, V (10)
Stancáková, Alena (10)
Laakso, M (10)
Kuusisto, J. (10)
Barroso, Ines (10)
Spector, Timothy D (10)
Rivadeneira, Fernand ... (10)
Amin, Najaf (9)
Launer, Lenore J. (9)
Hofman, A (9)
Kuusisto, Johanna (9)
Laakso, Markku (9)
McCarthy, Mark I (9)
Eriksson, Joel (9)
Vollenweider, P. (9)
Kutalik, Z. (9)
Liu, Yongmei (9)
Barroso, I (9)
Stancakova, A (9)
Campbell, H (9)
Wichmann, H. Erich (9)
Hayward, C. (9)
Rudan, I. (9)
Eiriksdottir, Gudny (9)
Hirschhorn, Joel N. (9)
visa färre...
Lärosäte
Göteborgs universitet (101)
Uppsala universitet (11)
Chalmers tekniska högskola (11)
Karolinska Institutet (6)
Umeå universitet (4)
Lunds universitet (4)
visa fler...
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (100)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (66)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy