SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansson John Olov 1954) ;pers:(Palsdottir Vilborg 1979)"

Sökning: WFRF:(Jansson John Olov 1954) > Palsdottir Vilborg 1979

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoffmann, Jenny M, et al. (författare)
  • BMP4 Gene Therapy in Mature Mice Reduces BAT Activation but Protects from Obesity by Browning Subcutaneous Adipose Tissue.
  • 2017
  • Ingår i: Cell reports. - : Elsevier BV. - 2211-1247. ; 20:5, s. 1038-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the effect of Bone Morphogenetic Protein 4 (BMP4) on energy expenditure in adult mature mice by targeting the liver with adeno-associated viral (AAV) BMP4 vectors to increase circulating levels. We verified the direct effect of BMP4 in inducing a brown oxidative phenotype in differentiating preadipocytes in vitro. AAV-BMP4-treated mice display marked browning of subcutaneous adipocytes, with increased mitochondria and Uncoupling Protein 1 (UCP1). These mice are protected from obesity on a high-fat diet and have increased whole-body energy expenditure, improved insulin sensitivity, reduced liver fat, and reduced adipose tissue inflammation. On a control diet, they show unchanged body weight but improved insulin sensitivity. In contrast, AAV-BMP4-treated mice showed beiging of BAT with reduced UCP1, increased lipids, and reduced hormone-sensitive lipase (HSL). Thus, BMP4 exerts different effects on WAT and BAT, but the overall effect is to enhance insulin sensitivity and whole-body energy expenditure by browning subcutaneous adipose tissue.
  •  
2.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Increased weight loading reduces body weight and body fat in obese subjects – A proof of concept randomized clinical trial
  • 2020
  • Ingår i: EClinicalMedicine. - : Elsevier BV. - 2589-5370. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recently we provided evidence for a leptin-independent homeostatic regulation, the gravitostat, of body weight in rodents. The aim of the present translational proof of concept study was to test the gravitostat hypothesis in humans. Methods: We conducted a randomized controlled single center trial (ClinicalTrial.gov number, NCT03672903), to evaluate the efficacy of artificially increased weight loading on body weight in subjects with mild obesity (BMI 30–35 kg/m2). Subjects were either treated with a heavy (=high load; 11% of body weight) or light (=low load; 1% of body weight) weight vest for eight hours per day for three weeks. The primary outcome was change in body weight. Secondary outcomes included change in body fat mass and fat-free mass as measured using bioelectrical impedance analysis. Findings: In total 72 participants underwent randomization and 69 (36 high load and 33 low load) completed the study for the primary outcome. High load treatment resulted in a more pronounced relative body weight loss compared to low load treatment (mean difference -1.37%, 95% confidence interval (CI), -1.96 to -0.79; p = 1.5 × 10−5). High load treatment reduced fat mass (-4.04%, 95% CI, -6,53 to -1.55; p = 1.9 × 10−3) but not fat free mass (0.43%, 95% CI, -1.47 to 2.34; p = 0.65) compared to low load treatment. Interpretation: Increased weight loading reduces body weight and fat mass in obese subjects in a similar way as previously shown in obese rodents. These findings demonstrate that there is weight loading dependent homeostatic regulation of body weight, the gravitostat, also in humans. Funding: Funded by Jane and Dan Olsson (JADO) Foundation, the Torsten Söderberg Foundation, The Knut and Alice Wallenberg's Foundation and the Novo Nordisk Foundation. © 2020 The Author(s)
  •  
3.
  • Anesten, Fredrik, et al. (författare)
  • Functional interleukin-6 receptor- is located in tanycytes at the base of the third ventricle
  • 2017
  • Ingår i: Journal of Neuroendocrinology. - : Wiley. - 0953-8194 .- 1365-2826. ; 29:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6(-)/(-) mice develop mature onset obesity, whereas i.c.v. injection of IL-6 decreases obesity in rodents. Moreover, levels of IL-6 in cerebrospinal fluid (CSF) were reported to be inversely correlated with obesity in humans. Tanycytes lining the base of the third ventricle (3V) in the hypothalamus have recently been reported to be of importance for metabolism. In the present study, we investigated whether tanycytes could respond to IL-6 in the CSF. With immunohistochemistry using a well characterised antibody directed against the ligand binding receptor for IL-6, IL-6 receptor (IL-6R), it was found that tanycytes, identified by the two markers, vimentin and dopamine- and cAMP-regulated phosphoprotein of 32 kDa, contained IL-6R. There were fewer IL-6R on another type of ventricle-lining cells, ependymal cells, as identified by the marker glucose transporter-1. To demonstrate that the immunoreactive IL-6R were responsive to IL-6, we injected IL-6 i.c.v. This treatment increased immunoreactive phosphorylated signal transducer and activator of transcription-3 (pSTAT3) in tanycytes after 5minutes and in cells in the medial part of the arcuate nucleus after 5 and 15 minutes. Intracerebroventricular injection of leptin exerted similar effects. As expected, i.p. injection of leptin also induced pSTAT3 staining in the hypothalamus, whereas i.p. IL-6 injection had little effect on this parameter. Intracerebroventricular or i.p. injection of vehicle only had no effect on pSTAT3-immunoreactivity. In summary, there are functional IL-6R on tanycytes at the bottom of the 3V, in agreement with the possibility that ventricular administration of IL-6 decreases obesity in mice via an effect on this cell type.
  •  
4.
  • Anesten, Fredrik, et al. (författare)
  • Glucagon-Like Peptide-1-, but not Growth and Differentiation Factor 15-, Receptor Activation Increases the Number of Interleukin-6-Expressing Cells in the External Lateral Parabrachial Nucleus
  • 2019
  • Ingår i: Neuroendocrinology. - : S. Karger AG. - 0028-3835 .- 1423-0194. ; 109:4, s. 310-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6 in the hypothalamus and hindbrain is an important downstream mediator of suppression of body weight and food intake by glucagon-like peptide-1 (GLP-1) receptor stimulation. CNS GLP-1 is produced almost exclusively in prepro-glucagon neurons in the nucleus of the solitary tract. These neurons innervate energy balance-regulating areas, such as the external lateral parabrachial nucleus (PBNel); essential for induction of anorexia. Using a validated novel IL-6-reporter mouse strain, we investigated the interactions in PBNel between GLP-1, IL-6, and calcitonin gene-related peptide (CGRP, a well-known mediator of anorexia). We show that PBNel GLP-1R-containing cells highly (to about 80%) overlap with IL-6-containing cells on both protein and mRNA level. Intraperitoneal administration of a GLP-1 analogue exendin-4 to mice increased the proportion of IL-6-containing cells in PBNel 3-fold, while there was no effect in the rest of the lateral parabrachial nucleus. In contrast, injections of an anorexigenic peptide growth and differentiation factor 15 (GDF15) markedly increased the proportion of CGRP-containing cells, while IL-6-containing cells were not affected. In summary, GLP-1R are found on IL-6-producing cells in PBNel, and GLP-1R stimulation leads to an increase in the proportion of cells with IL-6-reporter fluorescence, supporting IL-6 mediation of GLP-1 effects on energy balance.
  •  
5.
  • Anesten, Fredrik, et al. (författare)
  • Interleukin-6 in the central amygdala is bioactive and co-localised with glucagon-like peptide-1 receptor
  • 2019
  • Ingår i: Journal of Neuroendocrinology. - : Wiley. - 0953-8194 .- 1365-2826. ; 31:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal circuits involving the central amygdala (CeA) are gaining prominence as important centres for regulation of metabolic functions. As a part of the subcortical food motivation circuitry, CeA is associated with food motivation and hunger. We have previously shown that interleukin (IL)-6 can act as a downstream mediator of the metabolic effects of glucagon-like peptide-1 (GLP-1) receptor (R) stimulation in the brain, although the sites of these effects are largely unknown. In the present study, we used the newly generated and validated RedIL6 reporter mouse strain to investigate the presence of IL-6 in the CeA, as well as possible interactions between IL-6 and GLP-1 in this nucleus. IL-6 was present in the CeA, mostly in cells in the medial and lateral parts of this structure, and a majority of IL-6-containing cells also co-expressed GLP-1R. Triple staining showed GLP-1 containing fibres co-staining with synaptophysin close to or overlapping with IL-6 containing cells. GLP-1R stimulation enhanced IL-6 mRNA levels. IL-6 receptor-alpha (IL-6Rα) was found to a large part in neuronal CeA cells. Using electrophysiology, we determined that cells with neuronal properties in the CeA could be rapidly stimulated by IL-6 administration in vitro. Moreover, microinjections of IL-6 into the CeA could slightly reduce food intake in vivo in overnight fasted rats. In conclusion, IL-6 containing cells in the CeA express GLP-1R, are close to GLP-1-containing synapses, and demonstrate increased IL-6 mRNA in response to GLP-1R agonist treatment. IL-6, in turn, exerts biological effects in the CeA, possibly via IL-6Rα present in this nucleus. 2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology
  •  
6.
  • Anesten, Fredrik, et al. (författare)
  • Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6
  • 2016
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 311:1, s. R115-R123
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagonderived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca2+ concentration in neurons capable of expressing PPG. We also show that the Ca2+ increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca2+ to the cytosol from the extracellular space. © 2016 the American Physiological Society.
  •  
7.
  • Bake, Tina, et al. (författare)
  • The gravitostat protects diet-induced obese rats against fat accumulation and weight gain
  • 2021
  • Ingår i: Journal of Neuroendocrinology. - : Wiley. - 0953-8194 .- 1365-2826. ; 33:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitostat is a novel homeostatic body weight-regulating mechanism, mostly studied in mice, and recently confirmed in obese humans. In the present study, we explored the effect of weight loading on metabolic outcomes, meal patterns and parameters linked to energy expenditure in both obese and lean rats. Diet-induced obese (DIO) and lean rats were implanted with capsules weighing either 15% of biological body weight (load) or empty capsules (1.3% of body weight; controls). Loading protected against fat accumulation more markedly in the DIO group. In line with this, the obesity-related impairment in insulin sensitivity was notably ameliorated in DIO rats upon loading, as revealed by the reduction in serum insulin levels and homeostatic model assessment for insulin resistance index scores. Although 24-hour caloric intake was reduced in both groups, this effect was greater in loaded DIO rats than in loaded lean peers. During days 10-16, after recovery from surgery, loading: (i) decreased meal size in both groups (only during the light phase in DIO rats) but this was compensated in lean rats by an increase in meal frequency; (ii) reduced dark phase locomotor activity only in lean rats; and (iii) reduced mean caloric efficiency in DIO rats. Muscle weight was unaffected by loading in either group. Dietary-obese rats are therefore more responsive than lean rats to loading.
  •  
8.
  • Jansson, John-Olov, 1954, et al. (författare)
  • A Body Weight Sensor Regulates Prepubertal Growth via the Somatotropic Axis in Male Rats
  • 2021
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 162:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In healthy conditions, prepubertal growth follows an individual specific growth channel. Growth hormone (GH) is undoubtedly the major regulator of growth. However, the homeostatic regulation to maintain the individual specific growth channel during growth is unclear. We recently hypothesized a body weight sensing homeostatic regulation of body weight during adulthood, the gravitostat. We now investigated if sensing of body weight also contributes to the strict homeostatic regulation to maintain the individual specific growth channel during prepubertal growth. To evaluate the effect of increased artificial loading on prepubertal growth, we implanted heavy (20% of body weight) or light (2% of the body weight) capsules into the abdomen of 26-day-old male rats. The body growth, as determined by change in biological body weight and growth of the long bones and the axial skeleton, was reduced in rats bearing a heavy load compared with light load. Removal of the increased load resulted in a catch-up growth and a normalization of body weight. Loading decreased hypothalamic growth hormone releasing hormone mRNA, liver insulin-like growth factor (IGF)-1 mRNA, and serum IGF-1, suggesting that the reduced body growth was caused by a negative feedback regulation on the somatotropic axis and this notion was supported by the fact that increased loading did not reduce body growth in GH-treated rats. Based on these data, we propose the gravitostat hypothesis for the regulation of prepubertal growth. This states that there is a homeostatic regulation to maintain the individual specific growth channel via body weight sensing, regulating the somatotropic axis and explaining catch-up growth.
  •  
9.
  • Jansson, John-Olov, 1954, et al. (författare)
  • Body weight homeostat that regulates fat mass independently of leptin in rats and mice.
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 115:2, s. 427-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat ("gravitostat") that regulates fat mass.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (16)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Jansson, John-Olov, ... (16)
Anesten, Fredrik (8)
Ohlsson, Claes, 1965 (7)
Bellman, Jakob (6)
Skibicka, Karolina P (5)
visa fler...
Schéle, Erik, 1980 (4)
Dickson, Suzanne L., ... (3)
Windahl, Sara H, 197 ... (3)
Dalmau Gasull, Adria (3)
Zhang, F. (2)
Poutanen, Matti (2)
Grahnemo, Louise (2)
Gidestrand, Edwin (2)
Mishra, Devesh (2)
Trapp, S. (2)
Meister, B (1)
Jansson, Per-Anders, ... (1)
Nilsson, Staffan, 19 ... (1)
Ericson, Mia, 1970 (1)
Johansson, Maria E, ... (1)
Borén, Jan, 1963 (1)
Hammarstedt, Ann, 19 ... (1)
Palmquist, Anders, 1 ... (1)
Gabrielsson, Britt, ... (1)
Egecioglu, Emil, 197 ... (1)
Liposits, Z. (1)
Lindén, Daniel, 1971 (1)
Smith, Ulf, 1943 (1)
Törnqvist, Anna E (1)
Richard, Jennifer E. (1)
Gribble, F. M. (1)
Reimann, F. (1)
Hedjazifar, Shahram, ... (1)
Johansson, Maria E I ... (1)
Larsson, Christel, 1 ... (1)
Levin, Malin, 1973 (1)
Henricsson, Marcus, ... (1)
Tivesten, Åsa, 1969 (1)
Montelius, Mikael, 1 ... (1)
Andersson, Niklas, 1 ... (1)
Sjögren, Klara, 1970 (1)
Safari, Cecilia, 198 ... (1)
Santos, Cristiano, 1 ... (1)
Swedung-Wettervik, T ... (1)
Engström-Ruud, Linda (1)
Farkas, Imre (1)
Taing, Lilly (1)
Holt, M. K. (1)
Gustafsson, Jan-Åke (1)
visa färre...
Lärosäte
Göteborgs universitet (16)
Karolinska Institutet (4)
Chalmers tekniska högskola (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (16)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy