SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansson Per Anders) ;pers:(Pedersen O)"

Sökning: WFRF:(Jansson Per Anders) > Pedersen O

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boesgaard, T. W., et al. (författare)
  • The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients--the EUGENE2 study
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 51:5, s. 816-20
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: A recent genome-wide association study identified the SLC30A8 rs13266634 polymorphism encoding an Arg325Trp polymorphism in the zinc transporter protein member 8 (ZnT-8) to be associated with type 2 diabetes. Here, we investigate whether the polymorphism is related to altered insulin release in response to intravenous and oral glucose loads in non-diabetic offspring of type 2 diabetic patients. METHODS: We genotyped SLC30A8 rs13266634 in 846 non-diabetic offspring of type 2 diabetic patients from five different white populations: Danish (n = 271), Finnish (n = 217), German (n = 149), Italian (n = 109) and Swedish (n = 100). Participants were subjected to both IVGTTs and OGTTs, and measurements of insulin sensitivity. RESULTS: Homozygous carriers of the major type 2 diabetes C risk-allele showed a 19% decrease in first-phase insulin release (0-10 min) measured during the IVGTT (CC 3,624 +/- 3,197; CT 3,763 +/- 2,674; TT 4,478 +/- 3,032 pmol l(-1) min(-1), mean +/- SD; p = 0.007). We found no significant genotype effect on insulin release measured during the OGTT or on estimates of insulin sensitivity. CONCLUSIONS/INTERPRETATION: Of European non-diabetic offspring of type 2 diabetes patients, 46% are homozygous carriers of the Arg325Trp polymorphism in ZnT-8, which is known to associate with type 2 diabetes. These diabetes-prone offspring are characterised by a 19% decrease in first-phase insulin release following an intravenous glucose load, suggesting a role for this variant in the pathogenesis of pancreatic beta cell dysfunction.
  •  
2.
  • Boesgaard, T. W., et al. (författare)
  • Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients--EUGENE2 study
  • 2009
  • Ingår i: PLoS One. - 1932-6203. ; 4:9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKROUND: A meta-analysis combining results from three genome-wide association studies and followed by large-scale replication identified six novel type 2 diabetes loci. Subsequent studies of the effect of these variants on estimates of the beta-cell function and insulin sensitivity have been inconclusive. We examined these variants located in or near the JAZF1 (rs864745), THADA (rs7578597), TSPAN8 (rs7961581), ADAMTS9 (rs4607103), NOTCH2 (rs10923931) and the CDC123/CAMK1D (rs12779790) genes for associations with measures of pancreatic beta-cell function and insulin sensitivity. METHODOLOGY/RESULTS: Oral and intravenous glucose stimulated insulin release (n = 849) and insulin sensitivity (n = 596) estimated from a hyperinsulinemic euglycemic clamp were measured in non-diabetic offspring of type 2 diabetic patients from five European populations. Assuming an additive genetic model the diabetes-associated major C-allele of rs4607103 near ADAMTS9 associated with reduced insulin-stimulated glucose uptake (p = 0.002) during a hyperinsulinemic euglycemic clamp. However, following intravenous and oral administration of glucose serum insulin release was increased in individuals with the C-allele (p = 0.003 and p = 0.01, respectively). A meta-analyse combining clamp and IVGTT data from a total of 905 non-diabetic individuals showed that the C-risk allele associated with decreased insulin sensitivity (p = 0.003) and increased insulin release (p = 0.002). The major T-allele of the intronic JAZF1 rs864745 conferring increased diabetes risk was associated with increased 2(nd) phase serum insulin release during an IVGTT (p = 0.03), and an increased fasting serum insulin level (p = 0.001). The remaining variants did not show any associations with insulin response, insulin sensitivity or any other measured quantitative traits. CONCLUSION: The present studies suggest that the diabetogenic impact of the C-allele of rs4607103 near ADAMTS9 may in part be mediated through decreased insulin sensitivity of peripheral tissues.
  •  
3.
  • Hribal, M. L., et al. (författare)
  • Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 54:4, s. 795-802
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry. METHODS: Sample 1 comprised 845 non-diabetic offspring of type 2 diabetes patients recruited in five European centres participating in the EUGENE2 study. Samples 2 and 3 comprised, respectively, 864 and 524 Italian non-diabetic participants. All individuals underwent an OGTT. Screening for the rs10811661 polymorphism was performed using a TaqMan allelic discrimination assay. RESULTS: The rs10811661 polymorphism did not show a significant association with age, BMI and insulin sensitivity. Participants carrying the TT genotype showed a significant reduction in insulin release, measured by an OGTT-derived index, compared with carriers of the C allele, in the three samples. When these results were pooled with those of three published studies, and meta-analysed with a random-effects model, the T allele was significantly associated with reduced insulin secretion (-35.09 [95% CI 14.68-55.52], p = 0.0008 for CC+CT vs TT; and -29.45 [95% CI 9.51-49.38], p = 0.0038, for the additive model). In addition, in our three samples, participants carrying the TT genotype exhibited an increased risk for impaired glucose tolerance (IGT) compared with carriers of the C allele (OR 1.55 [95% CI 1.20-1.95] for the meta-analysis of the three samples). CONCLUSIONS/INTERPRETATION: Our data, together with the meta-analysis of previously published studies, show that the rs10811661 polymorphism is associated with impaired insulin release and IGT, suggesting that this variant may contribute to type 2 diabetes by affecting beta cell function.
  •  
4.
  • Laakso, M., et al. (författare)
  • Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 51:3, s. 502-11
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic patients from five different European Centres (Denmark, Finland, Germany, Italy and Sweden) were examined with regard to insulin sensitivity (euglycaemic clamps), insulin release (IVGTT) and glucose tolerance (OGTT). The levels of glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) were measured during the OGTT in 278 individuals. RESULTS: Normal glucose tolerance was found in 634 participants, while 110 had isolated IFG, 86 had isolated IGT and 44 had both IFG and IGT, i.e. about 28% had a form of reduced glucose tolerance. Participants with isolated IFG had lower glucose-corrected first-phase (0-10 min) and higher second-phase insulin release (10-60 min) during the IVGTT, while insulin sensitivity was reduced in all groups with abnormal glucose tolerance. Similarly, GLP-1 but not GIP levels were reduced in individuals with abnormal glucose tolerance. CONCLUSIONS/INTERPRETATION: The primary mechanism leading to hyperglycaemia in participants with isolated IFG is likely to be impaired basal and first-phase insulin secretion, whereas in isolated IGT the primary mechanism leading to postglucose load hyperglycaemia is insulin resistance. Reduced GLP-1 levels were seen in all groups with abnormal glucose tolerance and were unrelated to the insulin release pattern during an IVGTT.
  •  
5.
  • Staiger, H., et al. (författare)
  • A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study
  • 2008
  • Ingår i: Diabetes. - 1939-327X. ; 57:2, s. 514-7
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: In recent genome-wide association studies, two single nucleotide polymorphisms (SNPs) near the HHEX locus were shown to be more frequent in type 2 diabetic patients than in control subjects. Based on HHEX's function during embryonic development of the ventral pancreas in mice, we investigated whether these SNPs affect beta-cell function in humans. RESEARCH DESIGN AND METHODS: A total of 854 nondiabetic subjects, collected from five European clinical centers, were genotyped for the HHEX SNPs rs1111875 and rs7923837 and thoroughly characterized by an oral glucose tolerance test (OGTT). To assess glucose-stimulated insulin release, a subgroup of 758 subjects underwent an intravenous glucose tolerance test (IVGTT). RESULTS: SNPs rs1111875 and rs7923837 were not associated with anthropometric data (age, weight, height, BMI, body fat, and waist and hip circumference). After adjustment for center, family relationship, sex, age, and BMI, both SNPs were also not associated with glucose and insulin concentrations in the fasting state and during the OGTT or with measures of insulin sensitivity. Furthermore, HHEX SNP rs1111875 was not associated with insulin release during the IVGTT. By contrast, the minor A-allele of HHEX SNP rs7923837 was significantly associated with higher IVGTT-derived first-phase insulin release before and after appropriate adjustment (P = 0.013 and P = 0.014, respectively). CONCLUSIONS: A common genetic variation in the 3'-flanking region of the HHEX locus, i.e., SNP rs7923837, is associated with altered glucose-stimulated insulin release. This SNP's major allele represents a risk allele for beta-cell dysfunction and, thus, might confer increased susceptibility of beta-cells toward adverse environmental factors.
  •  
6.
  • Stancakova, A., et al. (författare)
  • Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance
  • 2008
  • Ingår i: Journal of Clinical Endocrinology & Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 93:5, s. 1924-30
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: CDKAL1 is a recently discovered susceptibility gene for type 2 diabetes. OBJECTIVE: Our objective was to investigate the impact of rs7754840 of CDKAL1 on insulin secretion, insulin sensitivity, and risk of type 2 diabetes. DESIGN AND SETTINGS: Study 1 (the EUGENE2 study) was a cross-sectional study including subjects from five white populations in Europe (Denmark, Finland, Germany, Italy, and Sweden). Study 2 is an ongoing prospective study of Finnish men. PARTICIPANTS: In study 1, 846 nondiabetic offspring of type 2 diabetic patients (age 40 +/- 10 yr; body mass index 26.7 +/- 5.0 kg/m(2)) participated. In study 2, subjects included 3900 middle-aged men (533 type 2 diabetic and 3367 nondiabetic subjects). Interventions: Interventions included iv glucose-tolerance test (IVGTT), oral glucose-tolerance test (OGTT), and euglycemic-hyperinsulinemic clamp in study 1 and OGTT in study 2. MAIN OUTCOME MEASURES: Parameters of insulin secretion, insulin resistance, and glucose tolerance status were assessed. RESULTS: In study 1, carriers of the GC and CC genotypes of rs7754840 had 11 and 24% lower first-phase insulin release in an IVGTT compared with that in carriers of the GG genotype (P = 0.002). The C allele was also associated with higher glucose area under the curve in an OGTT (P = 0.016). In study 2, rs7754840 was significantly associated with type 2 diabetes (P = 0.022) and markers of impaired insulin release [insulinogenic index (IGI), P = 0.012] in 2405 men with normal glucose tolerance. CONCLUSIONS: rs7754840 of CDKAL1 was associated with markers of impaired insulin secretion in two independent studies. Furthermore, rs7754840 was associated with type 2 diabetes in Finnish men (study 2). Therefore, CDKAL1 is likely to increase the risk of type 2 diabetes by impairing insulin secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy