SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jayananda K.) "

Sökning: WFRF:(Jayananda K.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 65:1-2, s. 111-125
  • Tidskriftsartikel (refereegranskat)abstract
    • On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar < 0.5, we obtain dN(ch)/d eta = 3.10 +/- 0.13(stat.) +/- 0.22(syst.) for all inelastic interactions, and dN(ch)/d eta = 3.51 +/- 0.15(stat.) +/- 0.25(syst.) for nonsingle diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN Sp<(p)over bar>S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.
  •  
2.
  • Söderlund, Ulf, et al. (författare)
  • Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton, India : Implications for paleoreconstructions and support for a ∼30° change in dyke trends from south to north
  • 2019
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268. ; 329, s. 26-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Large igneous provinces (LIPs) and especially their dyke swarms are pivotal to reconstruction of ancient supercontinents. The Dharwar craton of southern Peninsular India represents a substantial portion of Archean crust and has been considered to be a principal constituent of Superia, Sclavia, Nuna/Columbia and Rodinia supercontinents. The craton is intruded by numerous regional-scale mafic dyke swarms of which only a few have robustly constrained emplacement ages. Through this study, the LIP record of the Dharwar craton has been improved by U-Pb geochronology of 18 dykes, which together comprise seven generations of Paleoproterozoic dyke swarms with emplacement ages within the 2.37–1.79 Ga age interval. From oldest to youngest, the new ages (integrated with U-Pb ages previously reported for the Hampi swarm) define the following eight swarms with their currently recommended names:NE–SW to ESE–WNW trending ca. 2.37 Ga Bangalore-Karimnagar swarm.N–S to NNE–SSW trending ca. 2.25 Ga Ippaguda-Dhiburahalli swarm.N–S to NNW–SSE trending ca. 2.22 Ga Kandlamadugu swarm.NW–SE to WNW–ESE trending ca. 2.21 Ga Anantapur-Kunigal swarm.NW–SE to WNW–ESE trending ca. 2.18 Ga Mahbubnagar-Dandeli swarm.N–S, NW–SE, and ENE–WSW trending ca. 2.08 Ga Devarabanda swarm.E–W trending 1.88–1.89 Ga Hampi swarm.NW–SE ca. 1.79 Ga Pebbair swarm. Comparison of the arcuate trends of some swarms along with an apparent oroclinal bend of ancient geological features, such as regional Dharwar greenstone belts and the late Archean (ca. 2.5 Ga) Closepet Granite batholith, have led to the hypothesis that the northern Dharwar block has rotated relative to the southern block. By restoring a 30° counter clockwise rotation of the northern Dharwar block relative to the southern block, we show that pre-2.08 Ga arcuate and fanning dyke swarms consistently become approximately linear. Two possible tectonic models for this apparent bending, and concomitant dyke rotations, are discussed. Regardless of which deformation mechanisms applies, these findings reinforce previous suggestions that the radial patterns of the giant ca. 2.37 Ga Bangalore-Karimnagar dyke swarm, and probably also the ca. 2.21 Ga Anantapur-Kunigal swarm, may not be primary features.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy