SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jeppsson A) ;pers:(Flores Xavier)"

Sökning: WFRF:(Jeppsson A) > Flores Xavier

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Flores-Alsina, Xavier, et al. (författare)
  • Benchmarking strategies to control GHG production and emissions
  • 2022
  • Ingår i: Quantification and Modelling of Fugitive Greenhouse Gas Emissions from Urban Water Systems : A report from the IWA Task Group on GHG - A report from the IWA Task Group on GHG. - : IWA Publishing. - 9781789060454 - 9781789060461 ; , s. 213-228
  • Bokkapitel (refereegranskat)abstract
    • Benchmarking has been a useful tool for unbiased comparison of control strategies in wastewater treatment plants (WWTPs) in terms of effluent quality, operational cost and risk of suffering microbiology-related total suspended solids (TSS) separation problems. This chapter presents the status of extending the original Benchmark Simulation Model No 2 (BSM2) towards including greenhouse gas (GHG) emissions. A mathematical approach based on a set of comprehensive models that estimate all potential on-site and off-site sources of COinf2/inf, CHinf4/inf and Ninf2/infO is presented and discussed in detail. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects on increased GHG emissions when carrying out local energy optimization in the activated sludge section and/or energy recovery in the anaerobic digester. Although off-site COinf2/inf emissions may decrease in such scenarios due to either lower aeration energy requirement or higher heat and electricity production, these effects may be counterbalanced by increased Ninf2/infO emissions, especially since Ninf2/infO has a 300-fold stronger greenhouse effect than COinf2/inf. The reported results emphasize the importance of using integrated approaches when comparing and evaluating (plant-wide) control strategies in WWTPs for more informed operational decision-making.
  •  
5.
  • Flores-Alsina, Xavier, et al. (författare)
  • Benchmarking strategies to control GHG production and emissions : Chapter 9
  • 2022
  • Ingår i: Quantification and Modelling of Fugitive Greenhouse Gas Emissions from Urban Water Systems: A report from the IWA Task Group on GHG. - : IWA Publishing. - 9781789060461 - 9781789060454 ; , s. 213-228
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Benchmarking has been a useful tool for unbiased comparison of control strategies in wastewater treatment plants (WWTPs) in terms of effluent quality, operational cost and risk of suffering microbiology-related total suspended solids (TSS) separation problems. This chapter presents the status of extending the original Benchmark Simulation Model No 2 (BSM2) towards including greenhouse gas (GHG) emissions. A mathematical approach based on a set of comprehensive models that estimate all potential on-site and off-site sources of COinf2/inf, CHinf4/inf and Ninf2/infO is presented and discussed in detail. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects on increased GHG emissions when carrying out local energy optimization in the activated sludge section and/or energy recovery in the anaerobic digester. Although off-site COinf2/inf emissions may decrease in such scenarios due to either lower aeration energy requirement or higher heat and electricity production, these effects may be counterbalanced by increased Ninf2/infO emissions, especially since Ninf2/infO has a 300-fold stronger greenhouse effect than COinf2/inf. The reported results emphasize the importance of using integrated approaches when comparing and evaluating (plant-wide) control strategies in WWTPs for more informed operational decision-making. 
  •  
6.
  • Flores, Xavier, et al. (författare)
  • Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs.
  • 2013
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 466-467C, s. 616-624
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making.
  •  
7.
  • Flores, Xavier, et al. (författare)
  • Generation of (synthetic) influent data for performing wastewater treatment modelling studies
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • The success of many modelling studies strongly depends on the availability of sufficiently long influent time series - the main disturbance of a typical wastewater treatment plant (WWTP) - representing the inherent natural variability at the plant inlet as accurately as possible. This is an important point since most modelling projects suffer from a lack of realistic data representing the influent wastewater dynamics. The objective of this paper is to show the advantages of creating synthetic data when performing modelling studies for WWTPs. This study reviews the different principles that influent generators can be based on, in order to create realistic influent time series. In addition, the paper summarizes the variables that those models can describe: influent flow rate, temperature and traditional/emerging pollution compounds, weather conditions (dry/wet) as well as their temporal resolution (from minutes to years). The importance of calibration/validation is addressed and the authors critically analyse the pros and cons of manual versus automatic and frequentistic vs Bayesian methods. The presentation will focus on potential engineering applications of influent generators, illustrating the different model concepts with case studies. The authors have significant experience using these types of tools and have worked on interesting case studies that they will share with the audience. Discussion with experts at the WWTmod seminar shall facilitate identifying critical knowledge gaps in current WWTP influent disturbance models. Finally, the outcome of these discussions will be used to define specific tasks that should be tackled in the near future to achieve more general acceptance and use of WWTP influent generators.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy