SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ji H) ;hsvcat:2"

Sökning: WFRF:(Ji H) > Teknik

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Tommasini, R., et al. (författare)
  • Accepted Tutorials at The Web Conference 2022
  • 2022
  • Ingår i: WWW 2022 - Companion Proceedings of the Web Conference 2022. - New York, NY, USA : Association for Computing Machinery (ACM). ; , s. 391-399
  • Konferensbidrag (refereegranskat)abstract
    • This paper summarizes the content of the 20 tutorials that have been given at The Web Conference 2022: 85% of these tutorials are lecture style, and 15% of these are hands on. 
  •  
3.
  • Jian, J., et al. (författare)
  • Multi-stage supply restoration of active distribution networks with SOP integration
  • 2022
  • Ingår i: Sustainable Energy, Grids and Networks. - : Elsevier Ltd. - 2352-4677. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Supply restoration from outages is essential for improving the reliability of active distribution networks (ADNs) after fault isolation. Soft open point (SOP) can adjust the power flow among feeders and provide voltage support for power outage areas. Considering the sequential coordination of switching operation and SOP control mode selection, a multi-stage supply restoration method with SOPs is proposed for ADNs. First, the sequential energization is formulated, in which the impact of SOP control mode on restoration sequence is analyzed. By providing voltage support, the coordination of SOPs will rapidly energize the outage area and improve the voltage profile. Then, a multi-stage restoration model with SOPs is proposed, in which reconfiguration of switches and control mode selection of SOPs are coordinated in sequence to maximize the load recovery level of ADNs. Through the switching action-time mapping, secure operation is ensured during the entire supply restoration process. Finally, the effectiveness of the proposed method is validated on a modified IEEE 33-node distribution system and practical distribution networks with four-terminal SOP. Results show that the proposed method can fully exploit the potential benefits of SOPs and effectively enhance the load recovery level of ADNs.
  •  
4.
  • Ji, H., et al. (författare)
  • Robust operation for minimizing power consumption of data centers with flexible substation integration
  • 2022
  • Ingår i: Energy. - : Elsevier Ltd. - 0360-5442 .- 1873-6785. ; 248
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid development of digital economy has led to a dramatic increasement of internet data centers (IDCs), which consume a large amount of electricity. The diverse data-processing demands, high power consumption and workload uncertainty put forward a high requirement for the economical and secure operation of IDCs. As information technology (IT) devices are driven by direct current (DC), flexible substation (FS) has been gradually utilized to provide DC power for IDCs. This paper proposes robust operation strategies for minimizing IDC power consumption with FS integration. First, the linearized IDC power consumption model based on the technology of dynamic voltage and frequency scaling (DVFS) is proposed to describe the operating state of IT devices. Then, considering the FS-based coordinated operation of IDC, photovoltaic (PV) station and energy storage system (ESS), the deterministic power consumption minimization model of IDCs is established. Considering the workload uncertainty, the operation strategies based on distributionally robust optimization (DRO) for IDCs are further proposed. Finally, the effectiveness of proposed method is validated on a modified practical network with IDCs integrated. Results show that through the dispatch of workload and power flow regulation of FS, the power consumption and dropping workload of IDCs are effectively reduced. 
  •  
5.
  • Wang, R., et al. (författare)
  • Multi-resource dynamic coordinated planning of flexible distribution network
  • 2024
  • Ingår i: Nature Communications. - : Nature Portfolio. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The flexible distribution network presents a promising architecture to accommodate highly integrated distributed generators and increasing loads in an efficient and cost-effective way. The distribution network is characterised by flexible interconnections and expansions based on soft open points, which enables it to dispatch power flow over the entire system with enhanced controllability and compatibility. Herein, we propose a multi-resource dynamic coordinated planning method of flexible distribution network that allows allocation strategies to be determined over a long-term planning period. Additionally, we establish a probabilistic framework to address source-load uncertainties, which mitigates the security risks of voltage violations and line overloads. A practical distribution network is adopted for flexible upgrading based on soft open points, and its cost benefits are evaluated and compared with that of traditional planning approaches. By adjusting the acceptable violation probability in chance constraints, a trade-off between investment efficiency and operational security can be realised.
  •  
6.
  • Chen, S., et al. (författare)
  • Operational flexibility of active distribution networks with the potential from data centers
  • 2021
  • Ingår i: Applied Energy. - : Elsevier Ltd. - 0306-2619 .- 1872-9118. ; 293
  • Tidskriftsartikel (refereegranskat)abstract
    • With the development of information technology, the scale and quantity of internet data centers (IDCs) are expanding rapidly. IDCs have emerged as the major electricity consumers in active distribution networks (ADNs), which dramatically increase the electricity load and have a significant impact on the operational flexibility of ADNs. Geographically distributed IDCs can participate in the operation of ADNs with the potential for spatio-temporal load regulation. This paper proposes flexible dispatch strategies of data centers to improve the operational flexibility of ADNs. First, a data-power model of IT equipment is proposed based on piecewise linearization to describe the power consumption characteristics of data centers. The flexible dispatch strategies for the delay-tolerant workload are further proposed from two aspects of temporal transfer and spatial allocation. Then, considering the potential for spatio-temporal load regulation, the operational flexibility analysis model with data centers is formulated to adapt to the operational requirements of ADNs in complex environments. Case studies show that through the spatio-temporal regulation of workload, the energy efficiency of IDCs can be effectively improved. The flexible dispatch of IDCs can also reduce the voltage violation and feeder load imbalance of ADNs, which can facilitate providing the high-quality power supply for IDCs.
  •  
7.
  • Ji, Xianghai, et al. (författare)
  • InAs/GaSb core-shell nanowires grown on Si substrates by metal-organic chemical vapor deposition
  • 2016
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 27:27
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the growth of InAs/GaSb core-shell heterostructure nanowires with smooth sidewalls on Si substrates using metal-organic chemical vapor deposition with no assistance from foreign catalysts. Sb adatoms were observed to strongly influence the morphology of the GaSb shell. In particular, Ga droplets form on the nanowire tips when a relatively low TMSb flow rate is used, whereas the droplets are missing and the radial growth of the GaSb is enhanced due to a reduction in the diffusion length of the Ga adatoms when the TMSb flow rate is increased. Moreover, transmission electron microscopy measurements revealed that the GaSb shell coherently grew on the InAs core. The results obtained here show that the InAs/GaSb core-shell nanowires grown using the Si platform have strong potential in the fabrication of future nanometer-scale devices and in the study of fundamental quantum physics.
  •  
8.
  • Li, P., et al. (författare)
  • Quantized event-driven simulation for integrated energy systems with hybrid continuous-discrete dynamics
  • 2022
  • Ingår i: Applied Energy. - : Elsevier Ltd. - 0306-2619 .- 1872-9118. ; 307
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective simulation methods are becoming critically essential for the analysis of integrated energy systems (IESs) to reveal the interactions of multiple energy carriers. The incorporation of various energy technologies and numerous controllers make the IES a heterogeneous system, which poses new challenges to simulation methods. This paper focuses on the simulation of an IES with hybrid continuous-discrete properties and heterogeneous characteristics. First, a modified third-order quantized state system (MQSS3) method is proposed for the simulation of district heating systems (DHSs), in which quantized state system (QSS) and time-discretized integration are integrated to efficiently manage numerous discrete control actions. Second, an event-driven framework is established to integrate MQSS3 into the simulation of the electricity-heat integrated energy system (EH-IES). This framework enables the adoption of the most suitable models and algorithms for different systems to accommodate the heterogeneous properties of an IES. Case studies of an EH-IES with maximum 80% PV penetration and 210 buildings demonstrate that the dynamic interactions between the DHS and the power distribution network are accurately illustrated by the proposed simulation methods, in which MQSS3 indicates the highest simulation efficiency. It is also demonstrated in the simulation results that the flexibility from DHS can be utilized as demand-side resource to support the operation of power distribution network in aspects such as consuming the surplus PV generations. 
  •  
9.
  • Soler, J. M., et al. (författare)
  • Predictive Modeling of a Simple Field Matrix Diffusion Experiment Addressing Radionuclide Transport in Fractured Rock. Is It So Straightforward?
  • 2022
  • Ingår i: Nuclear Technology. - : Informa UK Limited. - 0029-5450 .- 1943-7471. ; 208:6, s. 1059-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • The SKB GroundWater Flow and Transport of Solutes Task Force is an international forum in the area of conceptual and numerical modeling of groundwater flow and solute transport in fractured rocks relevant for the deep geological disposal of radioactive waste. Two in situ matrix diffusion experiments in crystalline rock (gneiss) were performed at POSIVA’s ONKALO underground facility in Finland. Synthetic groundwater containing several conservative and sorbing radiotracers was injected at one end of a borehole interval and flowed along a thin annulus toward the opposite end. Several teams performed predictive modeling of the tracer breakthrough curves using “conventional” modeling approaches (constant diffusion and sorption in the rock, no or minimum rock heterogeneity). Supporting information, derived from small-scale laboratory experiments, was provided. The teams were free to implement different concepts, use different codes, and apply the transport and retention parameters that they considered to be most suited (i.e., not a benchmark exercise). The main goal was the comparison of the different sets of results and the analysis of the possible differences for this relatively simple experimental setup with a well-defined geometry. Even though the experiment was designed to study matrix diffusion, the calculated peaks of the breakthrough curves were very sensitive to the assumed magnitude of dispersion in the borehole annulus. However, given the very different timescales for advection and matrix diffusion, the tails of the curves provided information concerning diffusion and retention in the rock matrix regardless of the magnitude of dispersion. In addition, although the task was designed to be a blind modeling exercise, the model results have also been compared to the measured experimental breakthroughs. Experimental results tend to show relatively small activities, wide breakthroughs, and early first arrivals, which are somewhat similar to model results using large dispersivity values. 
  •  
10.
  • Sun, C., et al. (författare)
  • A facile approach toward multifunctional polyethersulfone membranes via in situ cross-linked copolymerization
  • 2015
  • Ingår i: Journal of Biomaterials Science. Polymer Edition. - : Taylor & Francis. - 0920-5063 .- 1568-5624. ; 26:15, s. 1013-1034
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, multifunctional polyethersulfone (PES) membranes are prepared via in situ cross-linked copolymerization coupled with a liquid-liquid phase separation technique. Acrylic acid (AA) and N-vinylpyrrolidone (VP) are copolymerized in PES solution, and the solution is then directly used to prepare PES membranes. The infrared and X-ray photoelectron spectroscopy testing, scanning electron microscopy, and water contact angle measurements confirm the successful modification of pristine PES membrane. Protein adsorption, platelet adhesion, plasma recalcification time, and activated partial thromboplastin time assays convince that the modified PES membranes have a better biocompatibility than pristine PES membrane. In addition, the modified membranes showed good protein antifouling property and significant adsorption property of cationic dye. The loading of Ag nanoparticles into the modified membranes endows the composite membranes with antibacterial activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy