SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jimenez E.) ;pers:(Jofre P.)"

Sökning: WFRF:(Jimenez E.) > Jofre P.

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
2.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
3.
  • Cantat-Gaudin, T., et al. (författare)
  • The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Chemically inhomogeneous populations are observed in most globular clusters, but not in open clusters. Cluster mass seems to play a key role in the existence of multiple populations. Aims. Studying the chemical homogeneity of the most massive open clusters is needed to better understand the mechanism of their formation and determine the mass limit under which clusters cannot host multiple populations. Here we studied NGC 6705, which is a young and massive open cluster located towards the inner region of the Milky Way. This cluster is located inside the solar circle. This makes it an important tracer of the inner disk abundance gradient. Methods. This study makes use of BVI and ri photometry and comparisons with theoretical isochrones to derive the age of NGC 6705. We study the density profile of the cluster and the mass function to infer the cluster mass. Based on abundances of the chemical elements distributed in the first internal data release of the Gaia-ESO Survey, we study elemental ratios and the chemical homogeneity of the red clump stars. Radial velocities enable us to study the rotation and internal kinematics of the cluster. Results. The estimated ages range from 250 to 316 Myr, depending on the adopted stellar model. Luminosity profiles and mass functions show strong signs of mass segregation. We derive the mass of the cluster from its luminosity function and from the kinematics, finding values between 3700 M-circle dot and 11 000 M-circle dot. After selecting the cluster members from their radial velocities, we obtain a metallicity of [Fe/H] = 0.10 +/- 0.06 based on 21 candidate members. Moreover, NGC 6705 shows no sign of the typical correlations or anti-correlations between Al, Mg, Si, and Na, which are expected in multiple populations. This is consistent with our cluster mass estimate, which is lower than the required mass limit proposed in the literature to develop multiple populations.
  •  
4.
  • Casali, G., et al. (författare)
  • The Gaia-ESO survey : Calibrating a relationship between age and the [C/N] abundance ratio with open clusters
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: In the era of large high-resolution spectroscopic surveys such as Gaia-ESO and APOGEE, high-quality spectra can contribute to our understanding of the Galactic chemical evolution by providing abundances of elements that belong to the different nucleosynthesis channels, and also by providing constraints to one of the most elusive astrophysical quantities: stellar age.Aims: Some abundance ratios, such as [C/N], have been proven to be excellent indicators of stellar ages. We aim at providing an empirical relationship between stellar ages and [C/N] using open star clusters, observed by the Gaia-ESO and APOGEE surveys, as calibrators.Methods: We used stellar parameters and abundances from the Gaia-ESO Survey and APOGEE Survey of the Galactic field and open cluster stars. Ages of star clusters were retrieved from the literature sources and validated using a common set of isochrones. We used the same isochrones to determine for each age and metallicity the surface gravity at which the first dredge-up and red giant branch bump occur. We studied the effect of extra-mixing processes in our sample of giant stars, and we derived the mean [C/N] in evolved stars, including only stars without evidence of extra mixing. By combining the Gaia-ESO and APOGEE samples of open clusters, we derived a linear relationship between [C/N] and (logarithmic) cluster ages.Results: We apply our relationship to selected giant field stars in the Gaia-ESO and APOGEE surveys. We find an age separation between thin-and thick-disc stars and age trends within their populations, with an increasing age towards lower metallicity populations.Conclusions: With this empirical relationship, we are able to provide an age estimate for giant stars in which C and N abundances are measured. For giant stars, the isochrone fitting method is indeed less sensitive than for dwarf stars at the turn-off. Our method can therefore be considered as an additional tool to give an independent estimate of the age of giant stars. The uncertainties in their ages is similar to those obtained using isochrone fitting for dwarf stars.
  •  
5.
  • Friel, E. D., et al. (författare)
  • Gaia-ESO Survey : Properties of the intermediate age open cluster NGC 4815
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 563, s. A117-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. NGC 4815 is a populous similar to 500 Myr open cluster at R-gc similar to 7 kpc observed in the first six months of the Gaia-ESO Survey. Located in the inner Galactic disk, NGC 4815 is an important potential tracer of the abundance gradient, where relatively few intermediate age open clusters are found. Aims. The Gaia-ESO Survey data can provide an improved characterization of the cluster properties, such as age, distance, reddening, and abundance profile. Methods. We use the survey derived radial velocities, stellar atmospheric parameters, metallicity, and elemental abundances for stars targeted as potential members of this cluster to carry out an analysis of cluster properties. The radial velocity distribution of stars in the cluster field is used to define the cluster systemic velocity and derive likely cluster membership for stars observed by the Gaia-ESO Survey. We investigate the distributions of Fe and Fe-peak elements, alpha-elements, and the light elements Na and Al and characterize the cluster's internal chemical homogeneity comparing it to the properties of radial velocity non-member stars. Utilizing these cluster properties, the cluster color-magnitude diagram is analyzed and theoretical isochrones are fit to derive cluster reddening, distance, and age. Results. NGC 4815 is found to have a mean metallicity of [Fe/H] = +0.03 +/- 0.05 dex (s.d.). Elemental abundances of cluster members show typically very small internal variation, with internal dispersions of similar to 0.05 dex. The alpha-elements [Ca/Fe] and [Si/Fe] show solar ratios, but [Mg/Fe] is moderately enhanced, while [Ti/Fe] appears slightly deficient. As with many open clusters, the light elements [Na/Fe] and [Al/Fe] are enhanced, [Na/Fe] significantly so, although the role of internal mixing and the assumption of local thermodynamical equilibrium in the analysis remain to be investigated. From isochrone fits to color-magnitude diagrams, we find a cluster age of 0.5 to 0.63 Gyr, a reddening of E(B-V) = 0.59 to 0.65, and a distance modulus (m -M)(0) = 11.95 to 12.20, depending on the choice of theoretical models, leading to a Galactocentric distance of 6.9 kpc.
  •  
6.
  • Blomme, R., et al. (författare)
  • The Gaia-ESO Survey : The analysis of the hot-star spectra
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 661
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey that has collected, over a period of six years, spectra of similar to 10(5) stars. This survey provides not only the reduced spectra, but also the stellar parameters and abundances resulting from the analysis of the spectra.Aims. The GES dataflow is organised in 19 working groups. Working group 13 (WG13) is responsible for the spectral analysis of the hottest stars (O, B, and A type, with a formal cutoff of T-eff > 7000 K) that were observed as part of GES. We present the procedures and techniques that have been applied to the reduced spectra in order to determine the stellar parameters and abundances of these stars.Methods. The procedure used was similar to that of other working groups in GES. A number of groups (called Nodes) each independently analyse the spectra via state-of-the-art techniques and codes. Specific for the analysis in WG13 was the large temperature range covered (T-eff approximate to 7000-50 000 K), requiring the use of different analysis codes. Most Nodes could therefore only handle part of the data. Quality checks were applied to the results of these Nodes by comparing them to benchmark stars, and by comparing them to one another. For each star the Node values were then homogenised into a single result: the recommended parameters and abundances.Results. Eight Nodes each analysed part of the data. In total 17 693 spectra of 6462 stars were analysed, most of them in 37 open star clusters. The homogenisation led to stellar parameters for 5584 stars. Abundances were determined for a more limited number of stars. The elements studied are He, C, N, O, Ne, Mg, Al, Si, and Sc. Abundances for at least one of these elements were determined for 292 stars. Conclusions. The hot-star data analysed here, as well as the GES data in general, will be of considerable use in future studies of stellar evolution and open clusters.
  •  
7.
  • Duffau, S., et al. (författare)
  • The Gaia-ESO Survey : Galactic evolution of sulphur and zinc
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 604
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. Aims. We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. Methods. By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. Results. We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Conclusions. Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary.
  •  
8.
  • Magrini, L., et al. (författare)
  • The Gaia-ESO Survey : the origin and evolution of s-process elements
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO DRS results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the average composition of clusters with ages >0.1 Gyr. We derived statistical ages and distances of field stars, and we separated them into thin and thick disc populations. We studied the time-evolution and dependence on metallicity of abundance ratios using open clusters and field stars whose parameters and abundances were derived in a homogeneous way. Results. Using our large and homogeneous sample of open clusters, thin and thick disc stars, spanning an age range larger than 10 Gyr, we confirm an increase towards young ages of s-process abundances in the solar neighbourhood. These trends are well defined for open clusters and stars located nearby the solar position and they may be explained by a late enrichment due to significant contribution to the production of these elements from long-living low-mass stars. At the same time, we find a strong dependence of the s-process abundance ratios on the Galactocentric distance and on the metallicity of the clusters and field stars. Conclusions. Our results, derived from the largest and most homogeneous sample of s-process abundances in the literature, confirm the growth with decreasing stellar ages of the s-process abundances in both field and open cluster stars. At the same time, taking advantage of the abundances of open clusters located in a wide Galactocentric range, these results offer a new perspective on the dependence of the s-process evolution on the metallicity and star formation history, pointing to different behaviours at various Galactocentric distances.
  •  
9.
  • Magrini, L., et al. (författare)
  • The Gaia-ESO Survey: Abundance ratios in the inner-disk open clusters Trumpler 20, NGC 4815, NGC 6705
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 563
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Open clusters are key tools to study the spatial distribution of abundances in the disk and their evolution with time. Aims. Using the first release of stellar parameters and abundances of the Gaia-ESO Survey, we analyse the chemical properties of stars in three old/intermediate-age open clusters, namely NGC 6705, NGC 4815, and Trumpler 20, which are all located in the inner part of the Galactic disk at Galactocentric radius R-GC similar to 7 kpc. We aim to prove their homogeneity and to compare them with the field population. Methods. We study the abundance ratios of elements belonging to two different nucleosynthetic channels: alpha-elements and iron-peak elements. For each element, we analyse the internal chemical homogeneity of cluster members, and we compare the cumulative distributions of cluster abundance ratios with those of solar neighbourhood turn-off stars and of inner-disk/bulge giants. We compare the abundance ratios of field and cluster stars with two chemical evolution models that predict different alpha-enhancement dependences on the Galactocentric distance due to different assumptions on the infall and star-formation rates. Results. The main results can be summarised as follows: i) cluster members are chemically homogeneous within 3 sigma in all analysed elements; ii) the three clusters have comparable [El/Fe] patterns within similar to 1 sigma, but they differ in their global metal content [El/H] with NGC 4815 having the lowest metallicity; their [El/Fe] ratios show differences and analogies with those of the field population, in both the solar neighbourhood and the bulge/inner disk; iii) comparing the abundance ratios with the results of two chemical evolution models and with field star abundance distributions, we find that the abundance ratios of Mg, Ni, and Ca in NGC 6705 might require an inner birthplace, implying a subsequent variation in its R-GC during its lifetime, which is consistent with previous orbit determination. Conclusions. Using the results of the first internal data release, we show the potential of the Gaia-ESO Survey through a homogeneous and detailed analysis of the cluster versus field populations to reveal the chemical structure of our Galaxy using a completely uniform analysis of different populations. We verify that the Gaia-ESO Survey data are able to identify the unique chemical properties of each cluster by pinpointing the composition of the interstellar medium at the epoch and place of formation. The full dataset of the Gaia-ESO Survey is a superlative tool to constrain the chemical evolution of our Galaxy by disentangling different formation and evolution scenarios.
  •  
10.
  • Magrini, L., et al. (författare)
  • The Gaia -ESO Survey : radial distribution of abundances in the Galactic disc from open clusters and young-field stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. Aims. We aim to trace the radial distributions of abundances of elements produced through different nucleosynthetic channels - the α-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by use of the Gaia-ESO IDR4 results for open clusters and young-field stars. Methods. From the UVES spectra of member stars, we have determined the average composition of clusters with ages > 0.1 Gyr. We derived statistical ages and distances of field stars. We traced the abundance gradients using the cluster and field populations and compared them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy