SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jin Lijun) ;hsvcat:2"

Sökning: WFRF:(Jin Lijun) > Teknik

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Huailei, et al. (författare)
  • Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system
  • 2023
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing greenhouse gas emissions has turned into a pillar of climate change mitigation. Truck platooning is proposed as a strategy to lower emissions from vehicles on roads. However, the potential interactive impacts of this technology on road infrastructure emissions remain unclear. Here, we evaluate the decarbonization effects of truck platooning on the integrated vehicle-road system at a large-scale road network level, spanning 1457 road sections across North America. We show that truck platooning decreases emissions induced by truck operations, but it degrades faster the durability of road infrastructure and leads to a 27.9% rise in road emissions due to more frequent maintenance work. Overall, truck platooning results in a 5.1% emission reduction of the integrated vehicle-road system. In contrast to the benefits of emission reduction, truck platooning leads to additional financial burdens on car users and transportation agencies, calling for the consideration of tradeoffs between emissions and costs and between agencies and users. Our research provides insights into the potential applications of truck platooning to mitigate climate change.
  •  
2.
  • Jia, Xue, et al. (författare)
  • CsPb(IxBr1-x)(3) solar cells
  • 2019
  • Ingår i: Science Bulletin. - : ELSEVIER. - 2095-9273. ; 64:20, s. 1532-1539
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell (PSC) becomes a promising candidate for next-generation high-efficiency solar cells. The power conversion efficiency (PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1-x)(3) and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1-x)(3) solar cells and outline possible directions to further improve the device performance. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
  •  
3.
  • Sun, Jingwu, et al. (författare)
  • From electronic structure to combustion model application for acrolein chemistry Part Ⅱ : Acrolein + HȮ2 reactions and the development of acrolein sub-mechanism
  • 2023
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 251
  • Tidskriftsartikel (refereegranskat)abstract
    • Acrolein, as one of the most hazardous aldehydes, can be formed among the carbonyls from the combustion of bio-fuels or mixtures of bio- and conventional fuels. Moreover, acrolein is also an important combustion intermediate in the oxidations of higher unsaturated hydrocarbons. A deep understanding of acrolein combustion chemistry will be useful for the kinetic modeling of higher hydrocarbons and ultimately practical fuels, with the acrolein reaction subset expected to be an important building block. In this work, the reaction system of acrolein + HȮ2, which is critical in controlling the reactivity of acrolein at low to intermediate temperatures (800–1000 K), was theoretically studied. Subsequently, by lumping the data calculated in this study, its companion work on the reaction system of acrolein + Ḣ in Part Ⅰ, other related high precision theoretical calculation studies and the relevant data estimated in the trusted models, a detailed chemical kinetic sub-mechanism has been developed to describe the directly related combustion reactions of acrolein. The kinetic, thermodynamic and transport data in the acrolein sub-mechanism were used to update and develop the base mechanism, AramcoMech 3.0. The updated model was then validated against ignition delay times (IDT) of acrolein measured in shock tube by Chatelain et al. [Fuel 135 (2014) 498], burning velocity of acrolein measured by Gibbs and Calcote [J. Chem. Engineer. Data 4 (1959) 226], species profiles from jet-stirred reactor for propene oxidation presented by Burke et al. [Combustion and Flame 161 (2014) 2765].
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy