SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Johannesson H.) ;lar1:(ri)"

Search: WFRF:(Johannesson H.) > RISE

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pettersson, Pär, 1985, et al. (author)
  • A proposal for an operating cycle description format for road transport missions
  • 2018
  • In: European Transport Research Review. - : Springer Science and Business Media LLC. - 1867-0717 .- 1866-8887. ; 10:2
  • Journal article (peer-reviewed)abstract
    • Purpose: This article presents a proposal for an operating cycle format for describing transport missions of road vehicles, for example a logging truck fetching its cargo. The primary application is in dynamic simulation models for evaluation of energy consumption and other costs of transportation. When applied to product development, the objective is an ensemble of components and functions optimised for specific tasks and environments. When applied to selection of vehicle configuration, the objective is a vehicle specification tailored for its task. Method: The proposal is presented and its four main parts: road, weather, traffic and mission, are thoroughly explained. Furthermore, we implement the proposal in an example of a dynamic forward simulation model. Results: The example model is used for two case studies: a synthetic example of a complex transport mission (a logging truck fetching its cargo) that shows some advanced format features, and an example from a real vehicle log file (cargo transport) that seeks to compare the resulting simulated speed profile to the measured one. Conclusion: The results show that the proposed format works in practice. It can represent complex transport missions and it can be used to reproduce the main features of a logged speed profile even when combined with simple driver and vehicle models.
  •  
2.
  • Pettersson, Pär, 1985, et al. (author)
  • A statistical operating cycle description for prediction of road vehicles’ energy consumption
  • 2019
  • In: Transportation Research Part D. - : Elsevier Ltd. - 1361-9209 .- 1879-2340. ; 73, s. 205-229
  • Journal article (peer-reviewed)abstract
    • We propose a novel statistical description of the physical properties of road transport operations by using stochastic models arranged in a hierarchical structure. The description includes speed signs, stops, speed bumps, curvature, topography, road roughness and ground type, with a road type introduced at the top of the hierarchy to group characteristics that are often connected. Methods are described how to generate data on a form (the operating cycle format) that can be used in dynamic simulations to estimate energy usage and CO2 emissions. To showcase the behaviour of the description, two examples are presented using a modular vehicle model for a heavy-duty truck: a sensitivity study on impacts from changes in the environment, and a comparison study on a real goods transport operation with respect to energy usage. It is found that the stop intensity and topography amplitude have the greatest impact in the sensitivity study (8.3% and 9.5% respectively), and the comparison study implies that the statistical description is capable of capturing properties of the road that are significant for vehicular energy usage. Moreover, it is discussed how the statistical description can be used in a vehicle design process, and how the mean CO2 emissions and its variation can be estimated for a vehicle specification.
  •  
3.
  • Pettersson, Pär, 1985, et al. (author)
  • Influence of hill-length on energy consumption for hybridized heavy transports in long-haul transports
  • 2016
  • In: 7th Commercial Vehicle Workshop Graz, 20160513, Graz.
  • Conference paper (peer-reviewed)abstract
    • Goods transports are big producers of CO2, i.e. consumers of energy. The conventional transport vehicles such as tractor-semitrailers can be replaced by long combination vehicles (LCVs). By doing so, fuel consumption will be reduced drastically, with up to 30%, mainly thanks to the reduced aerodynamic resistance per pay load mass and/or volume. Further reduction of CO2 improvements can be made by hybridization, if the road topography demands variable propulsion power due to up- and downhills. This gain is emphasized for heavier vehicles. So, hybridized LCVs are of special interest.When developing vehicles, or selecting vehicle for a certain transport, one needs to assume an operating cycle. To describe the operating cycle correctly is very important for this purpose. Traditionally, the magnitude of road grades is the only topography measure used to characterise the road. In this paper it is studied how an additional measure, hill length, influences these heavy hybridized LCVs. Together one can see these two measures as amplitude and wavelength.It is shown how energy saving varies for different types of roads (combinations of grade magnitude and hill-length) and different energy buffer sizes. Road topography is statistically generated for a good coverage of road types, but also examples of real roads are marked within these synthetic roads. The result can be combined with estimates of hybridization costs and conclusions can be drawn when it is beneficial to hybridize and with how large buffer. The main takeaways from the paper are that the potential energy savings for heavy LVCs due to hybridization are significant and that the hill-length is an important characteristic measure to include in operating cycle definitions.
  •  
4.
  • Romano, Luigi, 1994, et al. (author)
  • A Classification Method of Road Transport Missions and Applications Using the Operating Cycle Format
  • 2022
  • In: IEEE Access. - : Institute of Electrical and Electronics Engineers Inc.. - 2169-3536. ; 10, s. 73087-73121
  • Journal article (peer-reviewed)abstract
    • When dealing with customers, original equipment manufacturers (OEMs) classify vehicular usage by resorting to simplified, often colloquial, descriptions that allow for a rough understanding of the operating conditions and the user's needs. In this way, the information retrieved from the customers is exploited to guide their choices in terms of vehicle design and configuration, based on the characteristics of the transport application, labeled using intuitive metrics. However, a common problem in this context is the absence of any formal connection to lower levels of representation that might effectively be used to assess vehicular energy performance in simulation, or for design optimization using mathematical algorithms. Indeed, both processes require more accurate modeling of the surroundings, including exhaustive information about the local road, weather, and traffic conditions. Therefore, starting with a detailed statistical description of the environment, this paper proposes a method for mathematical classification of transport missions and applications within the theoretical framework of the operating cycle (OC). The approach discussed in the paper combines a collection of statistical models structured hierarchically, called a stochastic operating cycle (sOC), with a bird's-eye view description of the operating environment. The latter postulates the existence of different classes, which are representative of the usage and whose definition is based on simple metrics and thresholds expressed mathematically in terms of statistical measures. Algebraic expressions, called operating classes in the paper, are derived analytically for all the stochastic models presented. This establishes a connection between the two levels of representation, enabling to simulate longitudinal vehicle dynamics in virtual environments generated based on the characteristics of the intended application, using log data collected from vehicles and/or information provided by customers. Additionally, the relationships between the two descriptions are formalized using elementary probability operators, allowing for an intuitive characterization of a transport operation. An example is adduced to illustrate a possible application of the proposed method, using six sOCs parametrized from log data collected during real-world missions. The proposed approach may facilitate the interaction between OEMs, customers, and road operators, allowing for planning of maintenance, and optimization of transport missions, components, and configurations using standard procedures and routines. 
  •  
5.
  • Romano, Luigi, 1994, et al. (author)
  • An enhanced stochastic operating cycle description including weather and traffic models
  • 2021
  • In: Transportation Research Part D. - : Elsevier Ltd. - 1361-9209 .- 1879-2340. ; 97
  • Journal article (peer-reviewed)abstract
    • The present paper extends the concept of a stochastic operating cycle (sOC) by introducing additional models for weather and traffic. In regard to the weather parameters, dynamic models for air temperature, atmospheric pressure, relative humidity, precipitation, wind speed and direction are included. The traffic models is instead based on a macroscopic approach which describes the density dynamically by means of a simple autoregressive process. The enhanced format is structured in a hierarchical fashion, allowing for ease of implementation and modularity. The novel models are parametrised starting from data available from external databases. The possibility of generating synthetic data using the statistical descriptors introduced in the paper is also discussed. To investigate the impact of the novel parameters over energy efficiency, a sensitivity analysis is conducted with a combinatorial test design. Simulation results show that both seasonality and traffic conditions are responsible for introducing major variations in the CO2 emissions. © 2021 The Author(s)
  •  
6.
  • Romano, Luigi, 1994, et al. (author)
  • Development of the Vastra Gotaland operating cycle for long-haul heavy-duty vehicles
  • 2023
  • In: IEEE Access. - : Institute of Electrical and Electronics Engineers Inc.. - 2169-3536. ; 11, s. 73268-
  • Journal article (peer-reviewed)abstract
    • In this paper, a complete operating cycle (OC) description is developed for heavy-duty vehicles traveling long distances in the region of Västra Götaland, Sweden. Variation amongst road transport missions is accounted for using a collection of stochastic models. These are parametrized from log data for all the influential road parameters that may affect the energy performance of heavy trucks, including topography, curvature, speed limits, and stop signs. The statistical properties of the developed OC description are investigated numerically by considering some composite variables, condensing the salient information about the road characteristics, and inspired by two existing classification systems. Two examples are adduced to illustrate the potential of the OC format, which enables ease of classification and detailed simulation of energy efficiency for individual vehicles, with application in vehicle design optimization and selection, production planning, and predictive maintenance. In particular, for the track used in the first example, a Volvo FH13 equipped with a diesel engine, simulation results indicate mean CO2 emissions of around 1700 g km-1, with a standard deviation of 360 g km-1; in the second example, dealing with electrical fleet sizing, the optimal proportion shows a predominance of tractor-semitrailer vehicles (70%) equipping 4 motors and 11 battery packs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view