SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Börje) ;pers:(Skorodumova Natalia)"

Sökning: WFRF:(Johansson Börje) > Skorodumova Natalia

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Zoubi, Noura, et al. (författare)
  • Tetragonality of carbon-doped ferromagnetic iron alloys : A first-principles study
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 85:1, s. 014112-
  • Tidskriftsartikel (refereegranskat)abstract
    • Using density-functional theory in combination with the exact muffin-tin orbital (EMTO) method and coherent potential approximation, we investigate the alloying effect on the tetragonality of Fe-C solid solution forming the basis of steels. In order to assess the accuracy of our approach, first we perform a detailed study of the performance of the EMTO method for the Fe(16)C(1) binary system by comparing the EMTO results to those obtained using the projector augmented wave method. In the second step, we introduce different substitutional alloying elements (Al, Cr, Co, Ni) into the Fe matrix and study their impact on the structural parameters. We demonstrate that a small amount of Al, Co, and Ni enhances the tetragonal lattice ratio of Fe(16)C(1) whereas Cr leaves the ratio almost unchanged. The obtained trends are correlated with the single-crystal elastic parameters calculated for carbon-free alloys.
  •  
2.
  • Amft, Martin, et al. (författare)
  • Influence of the cluster dimensionality on the binding behavior of CO and O(2) on Au(13)
  • 2012
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 136:2, s. 024312-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an ab initio density functional theory study of the binding behavior of CO and O(2) molecules to two-and three-dimensional isomers of Au(13) in order to investigate the potential catalytic activity of this cluster towards low-temperature CO oxidation. First, we scanned the potential energy surface of Au(13) and studied the effect of spin-orbit coupling on the relative stabilities of the 21 isomers we identified. While spin-orbit coupling increases the stability of the three-dimensional more than the two-dimensional isomers, the ground state structure at 0 K remains planar. Second, we systematically studied the binding of CO and O(2) molecules onto the planar and three-dimensional structures lowest in energy. We find that the isomer dimensionality has little effect on the binding of CO to Au(13). O(2), on the other hand, binds significantly to the three-dimensional isomer only. The simultaneous binding of multiple CO molecules decreases the binding energy per molecule. Still, the CO binding remains stronger than the O(2) binding. We did not find a synergetic effect due to the co-adsorption of both molecular species. On the three-dimensional isomer, we find O(2) dissociation to be exothermic with an dissociation barrier of 1.44 eV.
  •  
3.
  • Andersson, David A., et al. (författare)
  • Modeling of Ce2, Ce2O3 ,and CeO2-x in the LDA+U formalism
  • 2007
  • Ingår i: Physical Review B Condensed Matter. - 0163-1829 .- 1095-3795. ; 75, s. 035109-1-035109-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure and thermodynamic properties of CeO2 and Ce2O3 have been studied from first principles by the all-electron projector-augmented-wave (PAW) method, as implemented in the ab initio total-energy and molecular-dynamics program VASP (Vienna ab initio simulation package). The local density approximation (LDA)+U formalism has been used to account for the strong on-site Coulomb repulsion among the localized Ce 4f electrons. We discuss how the properties of CeO2 and Ce2O3 are affected by the choice of U as well as the choice of exchange-correlation potential, i.e., the local density approximation or the generalized gradient approximation. Further, reduction of CeO2, leading to formation of Ce2O3 and CeO2-x, and its dependence on U and exchange-correlation potential have been studied in detail. Our results show that by choosing an appropriate U it is possible to consistently describe structural, thermodynamic, and electronic properties of CeO2, Ce2O3, and CeO2-x, which enables modeling of redox processes involving ceria-based materials.
  •  
4.
  • Andersson, David A., et al. (författare)
  • Optimization of ionic conductivity in doped ceria
  • 2006
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 103:10, s. 3518-3521
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy-dopant interactions, represented by association (binding) energies of vacancy-dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately.
  •  
5.
  • Andersson, David A., et al. (författare)
  • Redox properties of CeO2-MO2 MO2 (M=Ti, Zr, Hf or Th) solid solutions from first principles calculations
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 90:3, s. 031909-
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors have used density functional theory calculations to investigate how the redox thermodynamics and kinetics of CeO2 are influenced by forming solid solutions with TiO2, ZrO2, HfO2, and ThO2. Reduction is facilitated by dissolving TiO2 (largest improvement), HfO2, or ZrO2 (least improvement), while ThO2 makes reduction slightly more difficult. The migration barrier is much lower in the neighborhood of a Ti (largest decrease), Hf, or Zr (least decrease), while the binding energy of solute ions and vacancies increases in the same sequence. They rationalize the properties of ceria solid solutions in terms of defect cluster relaxations.
  •  
6.
  • Andersson, David A., et al. (författare)
  • Theoretical study of CeO(2) doped with tetravalent ions
  • 2007
  • Ingår i: Physical Review B Condensed Matter. - 0163-1829 .- 1095-3795. ; 76, s. 1741191-17411910
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used density functional theory calculations within the LDA+U formulation to investigate how small amounts of dissolved SiO2, GeO2, SnO2, or PbO2 affect the redox thermodynamics of ceria (CeO2). Compared to pure ceria, reduction is facilitated and the reducibility increases in the sequence of CeO2-SnO2, CeO2-GeO2, and CeO2-SiO2, which correlates with the decrease of the ionic radii of the solutes. For low solute concentrations, there is an inverse relation between high reducibility and the solution energy of tetravalent solutes. CeO2-PbO2 is unique in the sense that the initial reduction occurs by Pb(IV)double right arrow Pb(II) instead of the usual Ce(IV)double right arrow Ce(III) reaction. Among the investigated ceria compounds, CeO2-PbO2 has the lowest reduction energy and rather low solution energy. We have studied how the solution and reduction energies depend on the concentration of Si, Ge, Sn, Pb, Ti, Zr, Hf, and Th solute ions. While the solution energy increases monotonously with concentration, the reduction energy first decreases, as compared to pure ceria (except for Th, which exhibits a small increase), and with further increase of solute concentration, it either remains almost constant (Zr, Hf, and Th) or slightly increases (Ti, Si, Ge, and Sn).
  •  
7.
  •  
8.
  • Belonoshko, Anatoly B., et al. (författare)
  • Elastic anisotropy of Earth's inner core
  • 2008
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 319:5864, s. 797-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's solid- iron inner core is elastically anisotropic. Sound waves propagate faster along Earth's spin axis than in the equatorial plane. This anisotropy has previously been explained by a preferred orientation of the iron alloy hexagonal crystals. However, hexagonal iron becomes increasingly isotropic on increasing temperature at pressures of the inner core and is therefore unlikely to cause the anisotropy. An alternative explanation, supported by diamond anvil cell experiments, is that iron adopts a body- centered cubic form in the inner core. We show, by molecular dynamics simulations, that the body- centered cubic iron phase is extremely anisotropic to sound waves despite its high symmetry. Direct simulations of seismic wave propagation reveal an anisotropy of 12%, a value adequate to explain the anisotropy of the inner core.
  •  
9.
  • Belonoshko, Anatoly B., et al. (författare)
  • Stability of the body-centered-tetragonal phase of Fe at high pressure : Ground-state energies, phonon spectra, and molecular dynamics simulations
  • 2006
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 74:21
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well established that at a pressure of several megabars and low temperature Fe is stable in the hexagonal-close-packed (hcp) phase. However, there are indications that on heating a high-pressure hcp phase of Fe transforms to a less dense (open structure) phase. Two phases have been suggested as candidates for these high-temperature stable phases: namely, body-centered-cubic and body-centered-tetragonal (bct) phases. We performed first-principles molecular dynamics and phonon analysis of the bct Fe phase and demonstrated its dynamical instability. This allows us to dismiss the existence of the bct Fe phase under the high-pressure high-temperature conditions of the Earth's inner core.
  •  
10.
  • Belonoshko, Anatoly, et al. (författare)
  • High-pressure melting of MgSiO3
  • 2005
  • Ingår i: Phys. Rev. Lett.. ; 94, s. 195701-
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy