SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson H. T.) ;hsvcat:4"

Sökning: WFRF:(Johansson H. T.) > Lantbruksvetenskap

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rasel, H., et al. (författare)
  • Development of bioplastics based on agricultural side-stream products : Film extrusion of Crambe abyssinica/wheat gluten blends for packaging purposes
  • 2015
  • Ingår i: Journal of Applied Polymer Science. - : John Wiley & Sons. - 0021-8995 .- 1097-4628. ; 133:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this work was to add economic value to crambe meal, the protein-rich byproduct from the industrial extraction of Crambe abyssinica seed oil, by using it as a potential feedstock for oilseed meal-based plastics. The feasibility to produce continuous, flexible plastic films of glycerol-plasticized crambe meal blended with wheat gluten (WG) to improve extrudate properties and urea as a protein denaturant using extrusion was investigated. The effect of process parameters and blend composition were studied with regard to the extrusion performance and the film properties. Tensile properties and oxygen permeability were determined, and the film morphology was analyzed with scanning electron microscopy. A die temperature between 125 and 130°C resulted in films with the most homogeneous surfaces and highest tensile strength and extensibility. The use of compression molding after extrusion improved the surface quality and film strength and lowered the oxygen permeability. A decrease in the plasticizer content (from 30 to 20 wt %) improved the extrudability and showed the highest tensile strength, whereas the extensibility was essentially unaffected. The importance of the presence of WG was shown by the fact that strength and extensibility decreased when the crambe content was increased from 60 to 80 wt %. It was shown that crambe-based biopolymer blends could be extruded as continuous flexible plastic films that exhibited promising mechanical and oxygen barrier properties. The operational window was, however, found to be narrow. The results provide a first basis to further develop the process and the blend toward industrial applications, for example, as packaging materials.
  •  
2.
  • Nilsson, Anders K., 1982, et al. (författare)
  • Acylated monogalactosyl diacylglycerol : prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana
  • 2015
  • Ingår i: The Plant Journal. - : Wiley-Blackwell. - 0960-7412 .- 1365-313X. ; 84:6, s. 1152-1166
  • Tidskriftsartikel (refereegranskat)abstract
    • The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono-and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy