SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Kenneth) ;lar1:(umu)"

Sökning: WFRF:(Johansson Kenneth) > Umeå universitet

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fretts, Amanda M., et al. (författare)
  • Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores : a meta-analysis of 50,345 Caucasians
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 102:5, s. 1266-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined l) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-1n-pmon (95% CI: 0.035, 0.063-1n-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms.
  •  
2.
  • Ji, Xuemei, et al. (författare)
  • Protein-altering germline mutations implicate novel genes related to lung cancer development
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio=8.82, P=1.18x10(-15)) and replication (adjusted OR=2.93, P=2.22x10(-3)) that is more pronounced in females (adjusted OR=6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR=2.61, P=7.98x10(-22)) and replication datasets (adjusted OR=1.55, P=0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk. In lung cancer, relatively few germline mutations are known to impact risk. Here the authors looked at rare variants in 39,146 individuals and find novel germline mutations associated with risk, as well as implicating ATM and a new candidate gene for lung cancer risk.
  •  
3.
  •  
4.
  •  
5.
  • Haycock, Philip C., et al. (författare)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
6.
  • Hruby, Adela, et al. (författare)
  • Higher Magnesium Intake Is Associated with Lower Fasting Glucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies
  • 2013
  • Ingår i: Journal of Nutrition. - : Elsevier BV. - 0022-3166 .- 1541-6100. ; 143:3, s. 345-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (In-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [beta = -0.009 mmol/L (95% CI: -0.013, -0.005), P< 0.0001] and insulin (-0.020 In-pmo/L (95% CI: -0.024, -0.017), P< 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P= 0.03) with glucose, and rs11558471 in SLC30A8and rs3740393 near CNNM2showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted. J. Nutr. 143: 345-353, 2013.
  •  
7.
  • Klingspor, L., et al. (författare)
  • Epidemiology of fungaemia in Sweden: A nationwide retrospective observational survey
  • 2018
  • Ingår i: Mycoses. - : Wiley. - 0933-7407 .- 1439-0507. ; 61:10, s. 777-785
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesTo identify the epidemiology and antifungal susceptibilities of Candida spp. among blood culture isolates to identify the epidemiology and antifungal susceptibilities of Candida spp. among blood culture isolates in Sweden. MethodsThe study was a retrospective, observational nationwide laboratory-based surveillance for fungaemia and fungal meningitis and was conducted from September 2015 to August 2016. ResultsIn total, 488 Candida blood culture isolates were obtained from 471 patients (58% males). Compared to our previous study, the incidence of candidaemia has increased from 4.2/100000 (2005-2006) to 4.7/100000 population/year (2015-2016). The three most common Candida spp. isolated from blood cultures were Candida albicans (54.7%), Candida glabrata (19.7%) and species in the Candida parapsilosis complex (9.4%). Candida resistance to fluconazole was 2% in C.albicans and between 0% and 100%, in non-albicans species other than C.glabrata and C.krusei. Resistance to voriconazole was rare, except for C.glabrata, C.krusei and C.tropicalis. Resistance to anidulafungin was 3.8% while no Candida isolate was resistant to amphotericin B. ConclusionsWe report an overall increase in candidaemia but a minor decrease of C.albicans while C.glabrata and C.parapsilosis remain constant over this 10-year period.
  •  
8.
  • Lindmark, H, et al. (författare)
  • Enteric bacteria counteract lipopolysaccharide induction of antimicrobial peptide genes.
  • 2001
  • Ingår i: J Immunol. - 0022-1767. ; 167, s. 6920-6923
  • Tidskriftsartikel (refereegranskat)abstract
    • The humoral immunity of Drosophila involves the production of antimicrobial peptides, which are induced by evolutionary conserved microbial molecules, like LPS. By using Drosophila mbn-2 cells, we found that live bacteria, including E. coli, Salmonella typhimurium, Erwinia carotovora, and Pseudomonas aeruginosa, prevented LPS from inducing antimicrobial peptide genes, while Micrococcus luteus and Streptococcus equi did not. The inhibitory effect was seen at bacterial levels from 20 per mbn-2 cell, while antimicrobial peptides were induced at lower bacterial concentrations (< or =2 bacteria per cell) also in the absence of added LPS. Gel shift experiment suggests that the inhibitory effect is upstream or at the level of the activation of the transcription factor Relish, a member of the NF-kappaB/Rel family. The bacteria have to be in physical contact with the cells, but not phagocytosed, to prevent LPS induction. Interestingly, the inhibiting mechanism is, at least for E. coli, independent of the type III secretion system, indicating that the inhibitory mechanism is unrelated to the one earlier described for YopJ from Yersinia.
  •  
9.
  • Lindström, Sara, et al. (författare)
  • Genome-wide analyses characterize shared heritability among cancers and identify novel cancer susceptibility regions
  • 2023
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 115:6, s. 712-732
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The shared inherited genetic contribution to risk of different cancers is not fully known. In this study, we leverage results from 12 cancer genome-wide association studies (GWAS) to quantify pairwise genome-wide genetic correlations across cancers and identify novel cancer susceptibility loci.METHODS: We collected GWAS summary statistics for 12 solid cancers based on 376 759 participants with cancer and 532 864 participants without cancer of European ancestry. The included cancer types were breast, colorectal, endometrial, esophageal, glioma, head and neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancers. We conducted cross-cancer GWAS and transcriptome-wide association studies to discover novel cancer susceptibility loci. Finally, we assessed the extent of variant-specific pleiotropy among cancers at known and newly identified cancer susceptibility loci.RESULTS: We observed widespread but modest genome-wide genetic correlations across cancers. In cross-cancer GWAS and transcriptome-wide association studies, we identified 15 novel cancer susceptibility loci. Additionally, we identified multiple variants at 77 distinct loci with strong evidence of being associated with at least 2 cancer types by testing for pleiotropy at known cancer susceptibility loci.CONCLUSIONS: Overall, these results suggest that some genetic risk variants are shared among cancers, though much of cancer heritability is cancer-specific and thus tissue-specific. The increase in statistical power associated with larger sample sizes in cross-disease analysis allows for the identification of novel susceptibility regions. Future studies incorporating data on multiple cancer types are likely to identify additional regions associated with the risk of multiple cancer types.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
rapport (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Mozaffarian, Dariush (5)
Johansson, Ingegerd (5)
Franks, Paul W. (5)
Johansson, Mattias (5)
Orho-Melander, Marju (5)
Renström, Frida (5)
visa fler...
Hu, Frank B. (5)
Sonestedt, Emily (5)
Liu, Yongmei (5)
Hofman, Albert (5)
Uitterlinden, André ... (5)
Lemaitre, Rozenn N. (5)
Siscovick, David S. (5)
Cupples, L. Adrienne (5)
Kanoni, Stavroula (5)
Borecki, Ingrid B. (5)
van Rooij, Frank J. ... (5)
Ingelsson, Erik (4)
Le Marchand, Loïc (4)
Rotter, Jerome I. (4)
Brennan, Paul (4)
Zillikens, M. Carola (4)
Manichaikul, Ani (4)
Kritchevsky, Stephen ... (4)
Pankow, James S. (4)
Meigs, James B. (4)
Dedoussis, George V. (4)
Tanaka, Toshiko (4)
Bandinelli, Stefania (4)
Ferrucci, Luigi (4)
Ngwa, Julius S. (4)
Wojczynski, Mary K (4)
Tumino, Rosario (3)
Viikari, Jorma (3)
Chanock, Stephen J (3)
Deloukas, Panos (3)
Severi, Gianluca (3)
Ericson, Ulrika (3)
North, Kari E. (3)
Hallmans, Göran (3)
Kraft, Peter (3)
Ganna, Andrea (3)
Sjögren, Per (3)
Wrensch, Margaret (3)
Scelo, Ghislaine (3)
Franco, Oscar H. (3)
Prokopenko, Inga (3)
Raitakari, Olli (3)
Tardon, Adonina (3)
Hung, Rayjean J. (3)
visa färre...
Lärosäte
Uppsala universitet (7)
Lunds universitet (6)
Karolinska Institutet (6)
Göteborgs universitet (1)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (2)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy