SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Mikael) srt2:(2005-2009);pers:(Almqvist Monica)"

Sökning: WFRF:(Johansson Mikael) > (2005-2009) > Almqvist Monica

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Evander, Mikael, et al. (författare)
  • Acoustic trapping of cells in a microfluidic format
  • 2005
  • Ingår i: Proceedings of µTAS 2005 Conference. ; 1, s. 515-517
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents, for the first time, non-contact acoustic trapping of cells in a microfluidic format. The employed acoustic force maintains the cells in the center of a fluidic channel while allowing for perfusion of e.g. nutrients or drugs as well as optical monitoring of the cells. Neural stem cells have been acoustically trapped and tested for viability after 15 minutes of ultrasonic radiation. It is also shown that it is possible to grow yeast cells suspended in an acoustic standing wave while perfusing with cell media.
  •  
2.
  • Evander, Mikael, et al. (författare)
  • Acoustic Trapping: System Design, Optimization and Applications
  • 2006
  • Ingår i: Proceedings of the sixth Micro Structure Workshop. ; 1, s. 33-33
  • Konferensbidrag (refereegranskat)abstract
    • Manipulation, separation and trapping of particles and cells are very important tools in today's bioanalytical and medical field. The acoustic no-contact trapping method presented at earlier MSW 2004 provides a flexible platform for performing cell and particle assays in a perfusion-based microsystem. To further develop the system microfabricated glass channels are now used, resulting in shorter fabrication times and a very inert channel material. The fluidic design has been revised to minimise the risks of leaking and hydrodynamic focusing has been incorporated to ensure a high trapping efficiency. A change of piezoelectric materials has resulted in less thermal losses in the material, higher reproducibility and shorter manufacturing time. The trapping force was estimated by calculating the fluid force exerted on a single particle levitated in the standing wave as a reference. The temperature increase due to the losses in the transducer was measured using a fluorescent dye, indicating a maximum temperature increase of 10 degrees Celsius. Live cells have been trapped and shown to be viable while still suspended in the standing wave, thus making it possible to do on-line studies on, for example, drug response of cell populations.
  •  
3.
  • Evander, Mikael, et al. (författare)
  • Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays
  • 2007
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 79:7, s. 2984-2991
  • Tidskriftsartikel (refereegranskat)abstract
    • Techniques for manipulating, separating, and trapping particles and cells are highly desired in today's bioanalytical and biomedical field. The microfluidic chip-based acoustic noncontact trapping method earlier developed within the group now provides a flexible platform for performing cell- and particle-based assays in continuous flow microsystems. An acoustic standing wave is generated in etched glass channels (600x61 microm2) by miniature ultrasonic transducers (550x550x200 microm3). Particles or cells passing the transducer will be retained and levitated in the center of the channel without any contact with the channel walls. The maximum trapping force was calculated to be 430+/-135 pN by measuring the drag force exerted on a single particle levitated in the standing wave. The temperature increase in the channel was characterized by fluorescence measurements using rhodamine B, and levels of moderate temperature increase were noted. Neural stem cells were acoustically trapped and shown to be viable after 15 min. Further evidence of the mild cell handling conditions was demonstrated as yeast cells were successfully cultured for 6 h in the acoustic trap while being perfused by the cell medium at a flowrate of 1 microL/min. The acoustic microchip method facilitates trapping of single cells as well as larger cell clusters. The noncontact mode of cell handling is especially important when studies on nonadherent cells are performed, e.g., stem cells, yeast cells, or blood cells, as mechanical stress and surface interaction are minimized. The demonstrated acoustic trapping of cells and particles enables cell- or particle-based bioassays to be performed in a continuous flow format.
  •  
4.
  • Evander, Mikael, et al. (författare)
  • Versatile microchip utilising ultrasonic standing waves
  • 2005
  • Ingår i: IFMBE Proceedings 2005. ; , s. 123-124
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the concept and initial work on a microfluidic platform for bead-based analysis of biological sample. The core technology in this project is ultrasonic manipulation and trapping of particle in array configurations by means of acoustic forces. The platform is ultimately aimed for parallel multistep bioassays performed on biochemically activated microbeads (or particles) using submicrolitre sample volumes. A first prototype with three individually controlled particle trapping sites has been developed and evaluated. Standing ultrasonic waves were generated across a microfluidic channel by integrated PZT ultrasonic microtransducers. Particles in a fluid passing a transducer were drawn to pressure minima in the acoustic field, thereby being trapped and confined laterally over the transducer. It is anticipated that acoustic trapping using integrated transducers can be exploited in miniaturised total chemical analysis systems (µTAS), where e.g. microbeads with immobilised antibodies can be trapped in arrays and subjected to minute amounts of sample followed by a reaction, detected using fluorescence. Preliminary results indicate that the platform is capable of handling live cells as well as microbeads. A first model bioassay with detection of fluorescein marked avidin binding to trapped biotin beads has been evaluated.
  •  
5.
  •  
6.
  • Johansson, Linda, et al. (författare)
  • Temperature evaluation of soft and hard PZT transducers for ultrasonic
  • 2005
  • Ingår i: Proceedings of µTAS 2005 Conference. ; 2, s. 1428-1430
  • Konferensbidrag (refereegranskat)abstract
    • This paper reports a comparison of soft and hard piezoceramic transducer materials used for ultrasonic particle trapping in a microfluidic bioanalytical platform. The investigation is made with the objective to obtain high acoustic forces with a minimum of temperature increase. Themperature is a critical parameter for bioassays and most often need to be kept below a certain level to allow handling of e.g. temperature sensitive proteins. The main conclusion in this paper is that it is possible to get efficieint trapping with a temperature increase of only a few degrees using a hard type III transducer material.
  •  
7.
  • Lilliehorn, T, et al. (författare)
  • Dynamic arraying of microbeads for bioassays in microfluidic channels
  • 2005
  • Ingår i: Sensors and Actuators B: Chemical. - : Elsevier BV. - 0925-4005. ; 106:2, s. 851-858
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper proposes a new dynamic mode of generating bioanalytical arrays in microfluidic systems, based on ultrasonic trapping of microbeads using acoustic forces in standing waves. Trapping of microbead clusters in an array format within a flow-through device is demonstrated for the first time using a device with three integrated ultrasonic microtransducers. The lateral extension of each trapping site was essentially determined by the corresponding microtransducer dimensions, 0.8 mm x 0.8 mm. The flow-through volume was approximately 1 μ l and the trapping site volumes about 100 nl each. The strength of trapping was investigated, showing that 50% of the initially trapped beads were still trapped at a perfusion rate of 10 μ l/min. A fluorescence based avidin bioassay was successfully performed on biotin-coated microbeads trapped in the flow-through device, providing a first proof of principle of the proposed dynamic arraying concept. The dynamic arraying is believed to be expandable to two dimensions, thus, with a prospect of performing targeted and highly parallel protein analysis in microfluidic devices.
  •  
8.
  • Lilliehorn, Tobias, et al. (författare)
  • Trapping of microparticles in the near field of an ultrasonic transducer
  • 2005
  • Ingår i: Ultrasonics. - : Elsevier BV. - 0041-624X. ; 43:5, s. 293-303
  • Tidskriftsartikel (refereegranskat)abstract
    • We are investigating means of handling microparticles in microfluidic systems, in particular localized acoustic trapping of microparticles in a flow-through device. Standing ultrasonic waves were generated across a microfluidic channel by ultrasonic microtransducers integrated in one of the channel walls. Particles in a fluid passing a transducer were drawn to pressure minima in the acoustic field, thereby being trapped and confined at the lateral position of the transducer. The spatial distribution of trapped particles was evaluated and compared with calculated acoustic intensity distributions. The particle trapping was found to be strongly affected by near field pressure variations due to diffraction effects associated with the finite sized transducer element. Since laterally confining radiation forces are proportional to gradients in the acoustic energy density, these near field pressure variations may be used to get strong trapping forces, thus increasing the lateral trapping efficiency of the device. In the experiments, particles were successfully trapped in linear fluid flow rates up to 1 mm/s. It is anticipated that acoustic trapping using integrated transducers can be exploited in miniaturised total chemical analysis systems (μTAS), where e.g. microbeads with immobilised antibodies can be trapped in arrays and subjected to minute amounts of sample followed by a reaction, detected using fluorescence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy