SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Mikael B) ;pers:(Yuan Jian Min)"

Sökning: WFRF:(Johansson Mikael B) > Yuan Jian Min

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carreras-Torres, Robert, et al. (författare)
  • Obesity, metabolic factors and risk of different histological types of lung cancer : a Mendelian randomization study
  • 2017
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95% CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m(2)]), but not for adenocarcinoma (OR [95% CI] = 0.93 [0.79-1.08]) (P-heterogeneity = 4.3x10(-3)). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10(-3)), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95% CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95% CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
  •  
2.
  • McKay, James D., et al. (författare)
  • Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes
  • 2017
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 49:7, s. 1126-1132
  • Tidskriftsartikel (refereegranskat)abstract
    • Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genomewide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.
  •  
3.
  • Ji, Xuemei, et al. (författare)
  • Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
  •  
4.
  • Byun, Jinyoung, et al. (författare)
  • Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer
  • 2022
  • Ingår i: Nature Genetics. - : Nature Research. - 1061-4036 .- 1546-1718. ; 54:8, s. 1167-1177
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
  •  
5.
  • Cheng, Chao, et al. (författare)
  • Mosaic chromosomal alterations are associated with increased lung cancer risk : insight from the INTEGRAL-ILCCO cohort analysis
  • 2023
  • Ingår i: Journal of Thoracic Oncology. - : Elsevier. - 1556-0864 .- 1556-1380.
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Mosaic chromosomal alterations (mCAs) detected in white blood cells represent a type of clonal hematopoiesis (CH) that is understudied compared with CH-related somatic mutations. A few recent studies indicated their potential link with nonhematological cancers, especially lung cancer. Methods: In this study, we investigated the association between mCAs and lung cancer using the high-density genotyping data from the OncoArray study of INTEGRAL-ILCCO, the largest single genetic study of lung cancer with 18,221 lung cancer cases and 14,825 cancer-free controls. Results: We identified a comprehensive list of autosomal mCAs, ChrX mCAs, and mosaic ChrY (mChrY) losses from these samples. Autosomal mCAs were detected in 4.3% of subjects, in addition to ChrX mCAs in 3.6% of females and mChrY losses in 9.6% of males. Multivariable logistic regression analysis indicated that the presence of autosomal mCAs in white blood cells was associated with an increased lung cancer risk after adjusting for key confounding factors, including age, sex, smoking status, and race. This association was mainly driven by a specific type of mCAs: copy-neutral loss of heterozygosity on autosomal chromosomes. The association between autosome copy-neutral loss of heterozygosity and increased risk of lung cancer was further confirmed in two major histologic subtypes, lung adenocarcinoma and squamous cell carcinoma. In addition, we observed a significant increase of ChrX mCAs and mChrY losses in smokers compared with nonsmokers and racial differences in certain types of mCA events. Conclusions: Our study established a link between mCAs in white blood cells and increased risk of lung cancer.
  •  
6.
  • Du, Mulong, et al. (författare)
  • Cyp2a6 activity and cigarette consumption interact in smoking-related lung cancer susceptibility
  • 2024
  • Ingår i: Cancer Research. - : American Association For Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 84:4, s. 616-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen–metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke–exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85–0.91, P = 2.18 X 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis.
  •  
7.
  • Ferreiro-Iglesias, Aida, et al. (författare)
  • Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer has several genetic associations identified within the major histocompatibility complex (MHC); although the basis for these associations remains elusive. Here, we analyze MHC genetic variation among 26,044 lung cancer patients and 20,836 controls densely genotyped across the MHC, using the Illumina Illumina OncoArray or Illumina 660W SNP microarray. We impute sequence variation in classical HLA genes, fine-map MHC associations for lung cancer risk with major histologies and compare results between ethnicities. Independent and novel associations within HLA genes are identified in Europeans including amino acids in the HLA-B*0801 peptide binding groove and an independent HLA-DQB1*06 loci group. In Asians, associations are driven by two independent HLA allele sets that both increase risk in HLA-DQB1*0401 and HLA-DRB1*0701; the latter better represented by the amino acid Ala-104. These results implicate several HLA-tumor peptide interactions as the major MHC factor modulating lung cancer susceptibility.
  •  
8.
  • Sun, Ryan, et al. (författare)
  • Integration of multiomic annotation data to prioritize and characterize inflammation and immune-related risk variants in squamous cell lung cancer
  • 2021
  • Ingår i: Genetic Epidemiology. - : John Wiley & Sons. - 0741-0395 .- 1098-2272. ; 45:1, s. 99-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical trial results have recently demonstrated that inhibiting inflammation by targeting the interleukin-1 beta pathway can offer a significant reduction in lung cancer incidence and mortality, highlighting a pressing and unmet need to understand the benefits of inflammation-focused lung cancer therapies at the genetic level. While numerous genome-wide association studies (GWAS) have explored the genetic etiology of lung cancer, there remains a large gap between the type of information that may be gleaned from an association study and the depth of understanding necessary to explain and drive translational findings. Thus, in this study we jointly model and integrate extensive multiomics data sources, utilizing a total of 40 genome-wide functional annotations that augment previously published results from the International Lung Cancer Consortium (ILCCO) GWAS, to prioritize and characterize single nucleotide polymorphisms (SNPs) that increase risk of squamous cell lung cancer through the inflammatory and immune responses. Our work bridges the gap between correlative analysis and translational follow-up research, refining GWAS association measures in an interpretable and systematic manner. In particular, reanalysis of the ILCCO data highlights the impact of highly associated SNPs from nuclear factor-kappa B signaling pathway genes as well as major histocompatibility complex mediated variation in immune responses. One consequence of prioritizing likely functional SNPs is the pruning of variants that might be selected for follow-up work by over an order of magnitude, from potentially tens of thousands to hundreds. The strategies we introduce provide informative and interpretable approaches for incorporating extensive genome-wide annotation data in analysis of genetic association studies.
  •  
9.
  • Wang, Tao, et al. (författare)
  • Pleiotropy of genetic variants on obesity and smoking phenotypes : Results from the Oncoarray Project of The International Lung Cancer Consortium
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:9, s. 0185660-0185660
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity and cigarette smoking are correlated through complex relationships. Common genetic causes may contribute to these correlations. In this study, we selected 241 loci potentially associated with body mass index (BMI) based on the Genetic Investigation of ANthropometric Traits (GIANT) consortium data and calculated a BMI genetic risk score (BMI-GRS) for 17,037 individuals of European descent from the Oncoarray Project of the International Lung Cancer Consortium (ILCCO). Smokers had a significantly higher BMI-GRS than never-smokers (p = 0.016 and 0.010 before and after adjustment for BMI, respectively). The BMI-GRS was also positively correlated with pack-years of smoking (p<0.001) in smokers. Based on causal network inference analyses, seven and five of 241 SNPs were classified to pleiotropic models for BMI/smoking status and BMI/pack-years, respectively. Among them, three and four SNPs associated with smoking status and pack-years (p<0.05), respectively, were followed up in the ever-smoking data of the Tobacco, Alcohol and Genetics (TAG) consortium. Among these seven candidate SNPs, one SNP (rs11030104, BDNF) achieved statistical significance after Bonferroni correction for multiple testing, and three suggestive SNPs (rs13021737, TMEM18; rs11583200, ELAVL4; and rs6990042, SGCZ) achieved a nominal statistical significance. Our results suggest that there is a common genetic component between BMI and smoking, and pleiotropy analysis can be useful to identify novel genetic loci of complex phenotypes.
  •  
10.
  • Dai, Juncheng, et al. (författare)
  • Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci
  • 2019
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 40:3, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy