SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jones Ashley) ;lar1:(cth)"

Sökning: WFRF:(Jones Ashley) > Chalmers tekniska högskola

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  •  
3.
  • Barret, B., et al. (författare)
  • Intercomparisons of trace gases profiles from the Odin/SMR and Aura/MLS limb sounders
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:D21
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the intercomparison of O(3), HNO(3), ClO, N(2)O and CO profiles measured by the two spaceborne microwave instruments MLS ( Microwave Limb Sounder) and SMR ( Submillimetre Radiometer) on board the Aura and Odin satellites, respectively. We compared version 1.5 level 2 data from MLS with level 2 data produced by the French data processor version 222 and 225 and by the Swedish data processor version 2.0 for several days in September 2004 and in March 2005. For the five gases studied, an overall good agreement is found between both instruments. Most of the observed discrepancies between SMR and MLS are consistent with results from other intercomparison studies involving MLS or SMR. O(3) profiles retrieved from the SMR 501.8 GHz band are noisier than MLS profiles but mean biases between both instruments do not exceed 10%. SMR HNO(3) profiles are biased low relative to MLS's by similar to 30% above the profile peak. In the lower stratosphere, MLS ClO profiles are biased low by up to 0.3 ppbv relative to coincident SMR profiles, except in the Southern Hemisphere polar vortex in the presence of chlorine activation. N(2)O profiles from both instruments are in very good agreement with mean biases not exceeding 15%. Finally, the intercomparison between SMR and MLS CO profiles has shown a good agreement from the middle stratosphere to the middle mesosphere in spite of strong oscillations in the MLS profiles. In the upper mesosphere, MLS CO concentrations are biased high relative to SMR while negative values in the MLS retrievals are responsible for a negative bias in the tropics around 30 hPa.
  •  
4.
  • Brohede, Samuel, 1977, et al. (författare)
  • Internal consistency in the Odin stratospheric ozone products
  • 2007
  • Ingår i: Canadian Journal of Physics. - 0008-4204 .- 1208-6045. ; 85:11, s. 1275-1285
  • Tidskriftsartikel (refereegranskat)abstract
    • The two independent instruments on the Odin satellite, the Optical Spectrograph and Infrared Imaging System (OSIRIS) and the Sub-Millimetre Radiometer (SMR) produce atmospheric profiles of various atmospheric species including stratospheric ozone. Comparisons are made between OSIRIS version 3.0 and SMR version 2.1 ozone data to evaluate the consistency of the Odin ozone data sets. Results show good agreement between OSIRIS and SMR in the range 25–40 km, where systematic differences are less than 15% for all latitudes and seasons. Larger systematic differences are seen below 25 km, which can be explained by the increase of various error sources and lower signals. The random differences are between 20–30% in the middle stratosphere. Differences between Odin up-scans and down-scans or AM and PM are insignificant in the middle stratosphere. Furthermore, there is little variation from year to year, but a slight positive trend in the differences (OSIRIS minus SMR) of 0.045 ppmv/year at 30 km over validation period (2002–2006). The fact that the two fundamentally different measurement techniques, (absorption spectroscopy of scattering sunlight and emission measurements in the sub-millimetre region) agree so well, provides confidence in the robustness of both techniques.
  •  
5.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
6.
  • De Marco, O., et al. (författare)
  • The messy death of a multiple star system and the resulting planetary nebula as observed by JWST
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:12, s. 1421-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary nebulae—the ejected envelopes of red giant stars—provide us with a history of the last, mass-losing phases of 90% of stars initially more massive than the Sun. Here we analyse images of the planetary nebula NGC 3132 from the James Webb Space Telescope (JWST) Early Release Observations. A structured, extended hydrogen halo surrounding an ionized central bubble is imprinted with spiral structures, probably shaped by a low-mass companion orbiting the central star at about 40–60 au. The images also reveal a mid-infrared excess at the central star, interpreted as a dusty disk, which is indicative of an interaction with another closer companion. Including the previously known A-type visual companion, the progenitor of the NGC 3132 planetary nebula must have been at least a stellar quartet. The JWST images allow us to generate a model of the illumination, ionization and hydrodynamics of the molecular halo, demonstrating the power of JWST to investigate complex stellar outflows. Furthermore, new measurements of the A-type visual companion allow us to derive the value for the mass of the progenitor of a central star with excellent precision: 2.86 ± 0.06 M⊙. These results serve as pathfinders for future JWST observations of planetary nebulae, providing unique insight into fundamental astrophysical processes including colliding winds and binary star interactions, with implications for supernovae and gravitational-wave systems.
  •  
7.
  • Jones, Ashley, 1977, et al. (författare)
  • Analysis of HCl and ClO time series in the upper stratosphere using satellite data sets
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:11, s. 5321-5333
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous analyses of satellite and ground-based measurements of hydrogen chloride (HCl) and chlorine monoxide (ClO) have suggested that total inorganic chlorine in the upper stratosphere is on the decline. We create HCl and ClO time series using satellite data sets extended to November 2008, so that an update can be made on the long term evolution of these two species. We use the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data for the HCl analysis, and the Odin Sub-Millimetre Radiometer (SMR) and the Aura Microwave Limb Sounder (Aura-MLS) measurements for the study of ClO. Altitudes between 35 and 45 km and two mid-latitude bands: 30° S–50° S and 30° N–50° N, for HCl, and 20° S–20° N for ClO and HCl are studied. ACE-FTS and HALOE HCl anomaly time series (with QBO and seasonal contributions removed) are combined to produce all instrument average time series, which show HCl to be reducing from peak 1997 values at a linear estimated rate of −5.1 % decade−1 in the Northern Hemisphere and −5.2 % decade−1 in the Southern Hemisphere, while the tropics show a linear trend of −5.8 % per decade (although we do not remove the QBO contribution there due to sparse data). Trend values are significantly different from a zero trend at the 2 sigma level. ClO is decreasing in the tropics by −7.1 % ± 7.8 % decade−1 based on measurements made from December 2001 to November 2008. The statistically significant downward trend found in HCl after 1997 and the apparent downward ClO trend since 2001 (although not statistically significant) confirm how effective the 1987 Montreal protocol objectives and its amendments have been in reducing the total amount of inorganic chlorine.
  •  
8.
  • Jones, Ashley, 1977, et al. (författare)
  • Analyzing the applications of an assimilation model as a method for validation of satellite data
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D17101
  • Tidskriftsartikel (refereegranskat)abstract
    • An analysis was performed to illustrate that data assimilation is an appropriate method for validation of satellite measurements when very few coincidences are available between satellite measurements and balloon sondes. Results showed that the mean differences between the Isentropic Assimilation model for StratospheriC Ozone (IASCO) model ozone profiles and co-located ozone sondes shared systematic differences similar to those obtained from co-located MIPAS and ozone sonde coincidences. The spatial and temporal constraints of 12 hours and 800 km produced the optimal number of MIPAS/sonde matches for a statistical analysis. The largest residual between the IASCO/sonde mean difference and MIPAS/sonde mean difference, using these constraints, was less than 0.25 ppmv, between potential temperature levels of 425-975 K. By using the assimilation model coincidences, we also conclude that the maximum time/distance constraint sizes that can be used when obtaining matches between satellite measurements and in-situ measurements should be no more than 24 hours and a maximum of 1500-2000 km. However, local conditions such as the presence of a dynamical feature, for example the edge of the polar vortex, may of course greatly restrict these limits.
  •  
9.
  • Jones, Ashley, 1977, et al. (författare)
  • Evolution of stratospheric ozone and water vapour time series studied with satellite measurements
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 6055-6075
  • Tidskriftsartikel (refereegranskat)abstract
    • The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II), the HALogen Occultation Experiment (HALOE), the Solar BackscatterUltraViolet-2 (SBUV/2) instrument, the Sub-Millimetre Radiometer (SMR), the Optical Spectrograph InfraRed Imager System (OSIRIS), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY). Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO), and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma) from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively) compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS) measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km) and has even shown signs of increasing until present. We show that a similar correlation is also seen with the temperature measured at 100 hPa during this same period.
  •  
10.
  • Jones, Ashley, 1977, et al. (författare)
  • Intercomparison of Odin/SMR Ozone measurements with MIPAS and balloon sonde data
  • 2007
  • Ingår i: Canadian Journal of Physics. ; 85:11, s. 1111-1123
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sub-Millimetre Radiometer (SMR) on board Odin measures various important atmospheric species, including stratospheric ozone. In this study we compare the three versions (v1.2, v2.0 and v2.1) of level 2 Odin/SMR global stratospheric ozone data to coincident level 2 MIPAS V4.61 and balloon sonde stratospheric ozone data during 2003. The most current product from Odin/SMR (at time of writing), the v2.1, showed the smallest systematic differences when compared to coincident MIPAS and sonde data. Between 17 and 55 km, v2.1 values agreed with MIPAS within 10% (a maximum of 0.42 ppmv), while comparisons to sonde measurements showed an agreement of typically 5-10% between 22 and 35 km (less than 0.5 ppmv below 33 km). Tropical latitudes below 35 km preseneted the largest absolute systematic differences between v2.1 and sonde coincidences, where Odin/SMR was systematically lower by ~0.9 ppmv (more than 10% difference) at approximately 30 km. Comparisons concerning the previous two Odin/SMR versions showed much larger systematic differences, especially at the higher and lower stratospheric altitudes. The main conclusion here is that we suggest that v2.1 of Odin/SMR ozone data should be used for scientific studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy