SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jones Graeme) srt2:(2010-2014);hsvcat:3"

Sökning: WFRF:(Jones Graeme) > (2010-2014) > Medicin och hälsovetenskap

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
2.
  • Zheng, Hou-Feng, et al. (författare)
  • WNT16 influences bone mineral density, Cortical bone thickness, bone strength, and Osteoporotic fracture risk
  • 2012
  • Ingår i: PLoS genetics. - SAN FRANCISCO, USA : PUBLIC LIBRARY SCIENCE. - 1553-7404. ; 8:7, s. e1002745-
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2×10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3×10(-12), and -0.16 SD per G allele, P = 1.2×10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10(-6) and rs2707466: OR = 1.22, P = 7.2×10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5×10(-13)
  •  
3.
  •  
4.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: Working Toward a Prioritized World Agenda
  • 2010
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 41:6, s. 1084-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods-Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results-Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent "silo" mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a "Brain Health" concept that enables promotion of preventive measures. Conclusions-To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
5.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: Working toward a Prioritized World Agenda
  • 2010
  • Ingår i: Cerebrovascular Diseases. - : S. Karger AG. - 1421-9786 .- 1015-9770. ; 30:2, s. 127-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods: Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results: Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (e. g., social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions: To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress. Copyright (C) 2010 American Heart Association. Inc., S. Karger AG, Basel, and John Wiley & Sons, Inc.
  •  
6.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: working toward a prioritized world agenda
  • 2010
  • Ingår i: International Journal of Stroke. - : SAGE Publications. - 1747-4949 .- 1747-4930. ; 5:4, s. 238-256
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background and Purpose The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods Preliminary work was performed by seven working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
7.
  • Moayyeri, Alireza, et al. (författare)
  • Genetic determinants of heel bone properties : genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:11, s. 3054-3068
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 x 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 x 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 x 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Eisman, John A (4)
Eastell, Richard (4)
Richards, J. Brent (4)
Wilson, Scott G. (4)
Brown, Matthew A. (4)
Zheng, Hou-Feng (4)
visa fler...
Leo, Paul J (4)
Dennison, Elaine M (4)
Jones, Graeme (4)
McCloskey, Eugene (4)
Kaste, Markku (3)
Hankey, Graeme J. (3)
Rothwell, Peter M. (3)
Karlsson, Magnus (3)
Sambrook, Philip N. (3)
Kivipelto, Miia (3)
Ohlsson, Claes, 1965 (3)
Hacke, Werner (3)
Norrving, Bo (3)
Eriksson, Joel (3)
Ford, Gary A. (3)
Wahlgren, Nils (3)
Tuomilehto, Jaakko (3)
Mellström, Dan, 1945 (3)
Cramer, Steven C. (3)
Kalra, Lalit (3)
Furie, Karen L. (3)
Rivadeneira, Fernand ... (3)
Mitchell, Braxton D. (3)
Sacco, Ralph L. (3)
Leys, Didier (3)
Medina-Gomez, Caroli ... (3)
Bayley, Mark (3)
Fisher, Marc (3)
Brainin, Michael (3)
Goldstein, Larry B (3)
Donnan, Geoffrey A (3)
Martins, Sheila C.O. (3)
Hachinski, Vladimir (3)
Davis, Stephen M. (3)
Schwamm, Lee H (3)
Jones, Theresa A. (3)
Skvortsova, Veronika (3)
Streeten, Elizabeth ... (3)
Yerges-Armstrong, La ... (3)
Laaksonen, Marika (3)
Goltzman, David (3)
Leslie, William D (3)
Danoy, Patrick (3)
Nicholson, Geoffrey ... (3)
visa färre...
Lärosäte
Lunds universitet (6)
Göteborgs universitet (3)
Umeå universitet (3)
Karolinska Institutet (3)
Uppsala universitet (2)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy