SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jones Michael) ;hsvcat:4"

Sökning: WFRF:(Jones Michael) > Lantbruksvetenskap

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lichtenberg, Elinor M., et al. (författare)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
2.
  • Moss, Brian D., et al. (författare)
  • Climate change and the future of freshwater biodiversity in Europe : a primer for policy-makers
  • 2009
  • Ingår i: Freshwater Reviews. - : Freshwater Biological Association. - 1755-084X. ; 2:2, s. 103-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's climate is changing, and by the end of the 21st century in Europe, average temperatures are likely to have risen by at least 2 °C, and more likely 4 °C with associated effects on patterns of precipitation and the frequency of extreme weather events. Attention among policy-makers is divided about how to minimise the change, how to mitigate its effects, how to maintain the natural resources on which societies depend and how to adapt human societies to the changes. Natural systems are still seen, through a long tradition of conservation management that is largely species-based, as amenable to adaptive management, and biodiversity, mostly perceived as the richness of plant and vertebrate communities, often forms a focus for planning. We argue that prediction of particular species changes will be possible only in a minority of cases but that prediction of trends in general structure and operation of four generic freshwater ecosystems (erosive rivers, depositional floodplain rivers, shallow lakes and deep lakes) in three broad zones of Europe (Mediterranean, Central and Arctic-Boreal) is practicable. Maintenance and rehabilitation of ecological structures and operations will inevitably and incidentally embrace restoration of appropriate levels of species biodiversity. Using expert judgement, based on an extensive literature, we have outlined, primarily for lay policy makers, the pristine features of these systems, their states under current human impacts, how these states are likely to alter with a warming of 2 °C to 4 °C and what might be done to mitigate this. We have avoided technical terms in the interests of communication, and although we have included full referencing as in academic papers, we have eliminated degrees of detail that could confuse broad policy-making 
  •  
3.
  • Quentin, Audrey G, et al. (författare)
  • Non-structural carbohydrates in woody plants compared among laboratories.
  • 2015
  • Ingår i: Tree physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 35:11, s. 1146-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
  •  
4.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (9)
konferensbidrag (3)
bokkapitel (3)
rapport (2)
samlingsverk (redaktörskap) (1)
annan publikation (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
visa fler...
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
Guo, Laodong (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (12)
Göteborgs universitet (5)
Luleå tekniska universitet (3)
Uppsala universitet (2)
Stockholms universitet (2)
Naturvårdsverket (2)
visa fler...
Södertörns högskola (2)
Umeå universitet (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (17)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Samhällsvetenskap (5)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy