SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonsson Anders) ;lar1:(gu);conttype:(refereed);pers:(Brantsing Camilla)"

Sökning: WFRF:(Jonsson Anders) > Göteborgs universitet > Refereegranskat > Brantsing Camilla

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vukusic, Kristina, 1979, et al. (författare)
  • High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis
  • 2013
  • Ingår i: Biomed Research International. - : Hindawi Limited. - 2314-6133 .- 2314-6141.
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues.. e aim of this study was therefore to investigate the suitability of high density sphere (HDS) cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks.. e possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM) were studied by histology, immunohistochemistry, and uantitative real-time PCR. Defined media gave significant increase in both cardiac-and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3) inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.
  •  
2.
  •  
3.
  • Karlsson, Camilla, 1977, et al. (författare)
  • Notch and HES5 are regulated during human cartilage differentiation.
  • 2007
  • Ingår i: Cell and tissue research. - : Springer Science and Business Media LLC. - 0302-766X .- 1432-0878. ; 327:3, s. 539-51
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular mechanisms of cartilage differentiation are poorly understood. In a variety of tissues other than cartilage, members of the basic helix-loop-helix (bHLH) family of transcription factors have been demonstrated to play critical roles in differentiation. We have characterized the human bHLH gene HES5 and investigated its role during chondrogenesis. Blockage of the Notch signaling pathway with a gamma-secretase inhibitor has demonstrated that the human HES5 gene is a downstream marker of Notch signaling in articular chondrocytes. Markers for the Notch signaling pathway significantly decrease during cartilage differentiation in vitro. Cell proliferation assayed by using BrdU has revealed that blockage of Notch signaling is associated with significantly decreased proliferation. Northern blot and reverse transcription/polymerase chain reaction of a panel of various tissues have shown that HES5 is transcribed as a 5.4-kb mRNA that is ubiquitously expressed in diverse fetal and adult tissues. Articular cartilage from HES5(-/-) and wild-type mice has been analyzed by using various histological stains. No differences have been detected between the wild-type and HES5(-/-) mice. Our data thus indicate that the human HES5 gene is coupled to the Notch receptor family, that expression of Notch markers (including HES5) decreases during cartilage differentiation, and that the blockage of Notch signaling is associated with significantly decreased cell proliferation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy