SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jonsson Anders) ;lar1:(gu);lar1:(slu)"

Search: WFRF:(Jonsson Anders) > University of Gothenburg > Swedish University of Agricultural Sciences

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chawade, Aakash, 1980, et al. (author)
  • Development of a model system to identify differences in spring and winter oat
  • 2012
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7
  • Journal article (peer-reviewed)abstract
    • Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding. © 2012 Chawade et al.
  •  
2.
  • Metcalfe, Daniel B., et al. (author)
  • Patchy field sampling biases understanding of climate change impacts across the Arctic
  • 2018
  • In: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:9, s. 1443-1448
  • Journal article (peer-reviewed)abstract
    • Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.
  •  
3.
  • Svedäng, Henrik, et al. (author)
  • Local cod (Gadus morhua) revealed by egg surveys and population genetic analysis after longstanding depletion on the Swedish Skagerrak coast
  • 2019
  • In: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 76:2, s. 418-429
  • Journal article (peer-reviewed)abstract
    • Dramatic and persistent reductions in Atlantic cod (Gadus morhua) are common in many coastal areas. While offshore cod stocks still were abundant and productive, the Swedish west coast showed signs of diminishing adult cod abundance at the beginning of the 1980s, where the local cod component was considered to be extirpated. To survey the present cod spawning activity and stock composition, we initiated egg trawling over two consecutive years (203 hauls in total) in combination with population genetic analyses (425 individually genotyped eggs). Here, we provide evidence of cod spawning at the Swedish Skagerrak coast, suggesting recolonization or that local cod has recovered from a nearly depleted state. Early stage eggs were found inside fjords too far to have been transported by oceanic drift from offshore spawning areas. The cod eggs were genetically similar in early to late life-stages and cluster mainly with the local adult cod, indicating that eggs and adults belong to the same genetic unit. The cod eggs were genetically differentiated from adult North Sea cod, and, to a lesser degree, also from the Kattegat and Öresund cod, i.e. indicating a possible recovery of local coastal stock.The patterns of the genetic structure in the inshore areas are, however, difficult to fully disentangle, as Atlantic cod in the North Sea-Skagerrak area seem to be a mixture of co-existing forms: local cod completing their entire life cycle in fjords and sheltered areas, and oceanic populations showing homing behaviours. The egg abundances are considerably lower compared with what is found in similar studies along the Norwegian Skagerrak coast. Nevertheless, the discovery of locally spawning cod along the Swedish west coast—although at low biomasses—is an encouraging finding that highlights the needs for endurance in protective measures and of detailed surveys to secure intraspecific biodiversity and ecosystem services.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view