SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jonsson Anders) ;lar1:(gu);pers:(Lind Ulrika)"

Search: WFRF:(Jonsson Anders) > University of Gothenburg > Lind Ulrika

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jonsson, Per R., 1957, et al. (author)
  • The Barnacle Balanus improvisus as a Marine Model - Culturing and Gene Expression
  • 2018
  • In: Jove-Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; :138
  • Journal article (peer-reviewed)abstract
    • Barnacles are marine crustaceans with a sessile adult and free-swimming, planktonic larvae. The barnacle Balanus (Amphibalanus) improvisus is particularly relevant as a model for the studies of osmoregulatory mechanisms because of its extreme tolerance to low salinity. It is also widely used as a model of settling biology, in particular in relation to antifouling research. However, natural seasonal spawning yields an unpredictable supply of cyprid larvae for studies. A protocol for the all-year-round culturing of B. improvisus has been developed and a detailed description of all steps in the production line is outlined (i.e., the establishment of adult cultures on panels, the collection and rearing of barnacle larvae, and the administration of feed for adults and larvae). The description also provides guidance on troubleshooting and discusses critical parameters (e.g., the removal of contamination, the production of high-quality feed, the manpower needed, and the importance of high-quality seawater). Each batch from the culturing system maximally yields roughly 12,000 nauplii and can deliver four batches in a week, so up to almost 50,000 larvae per week can be produced. The method used to culture B. improvisus is, probably, to a large extent also applicable to other marine invertebrates with free-swimming-larvae. Protocols are presented for the dissection of various tissues from adults as well as the production of high-quality RNA for studies on gene expression. It is also described how cultured adults and reared cyprids can be utilized in a wide array of experimental designs for examining gene expression in relation to external factors. The use of cultured barnacles in gene expression is illustrated with studies of possible osmoregulatory roles of Na+/K+ ATPase and aquaporins.
  •  
2.
  • Lind, Ulrika, et al. (author)
  • Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity
  • 2017
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:7
  • Journal article (peer-reviewed)abstract
    • Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation. © 2017 Lind et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
3.
  • Lind, Ulrika, et al. (author)
  • Molecular Characterization of the alpha-Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants
  • 2013
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:10
  • Journal article (peer-reviewed)abstract
    • The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO(2) levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions.
  •  
4.
  • Wrange, Anna-Lisa, 1981, et al. (author)
  • Importance of plasticity and local adaptation for coping with changing salinity in coastal areas: a test case with barnacles in the Baltic Sea
  • 2014
  • In: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Background: Salinity plays an important role in shaping coastal marine communities. Near-future climate predictions indicate that salinity will decrease in many shallow coastal areas due to increased precipitation; however, few studies have addressed this issue. The ability of ecosystems to cope with future changes will depend on species’ capacities to acclimatise or adapt to new environmental conditions. Here, we investigated the effects of a strong salinity gradient (the Baltic Sea system – Baltic, Kattegat, Skagerrak) on plasticity and adaptations in the euryhaline barnacle Balanus improvisus. We used a common-garden approach, where multiple batches of newly settled barnacles from each of three different geographical areas along the Skagerrak-Baltic salinity gradient were exposed to corresponding native salinities (6, 15 and 30 PSU), and phenotypic traits including mortality, growth, shell strength, condition index and reproductive maturity were recorded. Results We found that B. improvisus was highly euryhaline, but had highest growth and reproductive maturity at intermediate salinities. We also found that low salinity had negative effects on other fitness-related traits including initial growth and shell strength, although mortality was also lowest in low salinity. Overall, differences between populations in most measured traits were weak, indicating little local adaptation to salinity. Nonetheless, we observed some population-specific responses – notably that populations from high salinity grew stronger shells in their native salinity compared to the other populations, possibly indicating adaptation to differences in local predation pressure. Conclusions Our study shows that B. improvisus is an example of a true brackish-water species, and that plastic responses are more likely than evolutionary tracking in coping with future changes in coastal salinity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view