SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonsson Pär) ;pers:(Schuppe Koistinen Ina)"

Sökning: WFRF:(Jonsson Pär) > Schuppe Koistinen Ina

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chorell, Elin, et al. (författare)
  • Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics
  • 2006
  • Ingår i: Metabolomics. - : Springer Science and Business Media LLC. - 1573-3882 .- 1573-3890. ; 2:4, s. 257-68
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy for robust and reliable mechanistic statistical modelling of metabolic responses in relation to drug induced toxicity is presented. The suggested approach addresses two cases commonly occurring within metabonomic toxicology studies, namely; 1) A pre-defined hypothesis about the biological mechanism exists and 2) No such hypothesis exists. GC/MS data from a liver toxicity study consisting of rat urine from control rats and rats exposed to a proprietary AstraZeneca compound were resolved by means of hierarchical multivariate curve resolution (H-MCR) generating 287 resolved chromatographic profiles with corresponding mass spectra. Filtering according to significance in relation to drug exposure rendered in 210 compound profiles, which were subjected to further statistical analysis following correction to account for the control variation over time. These dose related metabolite traces were then used as new observations in the subsequent analyses. For case 1, a multivariate approach, named Target Batch Analysis, based on OPLS regression was applied to correlate all metabolite traces to one or more key metabolites involved in the pre-defined hypothesis. For case 2, principal component analysis (PCA) was combined with hierarchical cluster analysis (HCA) to create a robust and interpretable framework for unbiased mechanistic screening. Both the Target Batch Analysis and the unbiased approach were cross-verified using the other method to ensure that the results did match in terms of detected metabolite traces. This was also the case, implying that this is a working concept for clustering of metabolites in relation to their toxicity induced dynamic profiles regardless if there is a pre-existing hypothesis or not. For each of the methods the detected metabolites were subjected to identification by means of data base comparison as well as verification in the raw data. The proposed strategy should be seen as a general approach for facilitating mechanistic modelling and interpretations in metabolomic studies.
  •  
2.
  • Jonsson, Pär, et al. (författare)
  • A strategy for modelling dynamic responses in metabolic samples characterized by GC/MS
  • 2006
  • Ingår i: Metabolomics. - : Springer Science and Business Media LLC. - 1573-3882 .- 1573-3890. ; 2:3, s. 135-143
  • Tidskriftsartikel (refereegranskat)abstract
    • A multivariate strategy for studying the metabolic response over time in urinary GC/MS data is presented and exemplified by a study of drug-induced liver toxicity in the rat. The strategy includes the generation of representative data through hierarchical multivariate curve resolution (H-MCR), highlighting the importance of obtaining resolved metabolite profiles for quantification and identification of exogenous (drug related) and endogenous compounds (potential biomarkers) and for allowing reliable comparisons of multiple samples through multivariate projections. Batch modelling was used to monitor and characterize the normal (control) metabolic variation over time as well as to map the dynamic response of the drug treated animals in relation to the control. In this way treatment related metabolic responses over time could be detected and classified as being drug related or being potential biomarkers. In summary the proposed strategy uses the relatively high sensitivity and reproducibility of GC/MS in combination with efficient multivariate curve resolution and data analysis to discover individual markers of drug metabolism and drug toxicity. The presented results imply that the strategy can be of great value in drug toxicity studies for classifying metabolic markers in relation to their dynamic responses as well as for biomarker identification.
  •  
3.
  •  
4.
  • Jonsson, Pär, et al. (författare)
  • Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data : a potential tool for multi-parametric diagnosis
  • 2006
  • Ingår i: Journal of Proteome Research. - : American Chemical Society. - 1535-3893 .- 1535-3907. ; 5:6, s. 1407-1414
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for predictive metabolite profiling based on resolution of GC-MS data followed by multivariate data analysis is presented and applied to three different biofluid data sets (rat urine, aspen leaf extracts, and human blood plasma). Hierarchical multivariate curve resolution (H-MCR) was used to simultaneously resolve the GC-MS data into pure profiles, describing the relative metabolite concentrations between samples, for multivariate analysis. Here, we present an extension of the H-MCR method allowing treatment of independent samples according to processing parameters estimated from a set of training samples. Predictions or inclusion of the new samples, based on their metabolite profiles, into an existing model could then be carried out, which is a requirement for a working application within, e.g., clinical diagnosis. Apart from allowing treatment and prediction of independent samples the proposed method also reduces the time for the curve resolution process since only a subset of representative samples have to be processed while the remaining samples can be treated according to the obtained processing parameters. The time required for resolving the 30 training samples in the rat urine example was approximately 13 h, while the treatment of the 30 test samples according to the training parameters required only approximately 30 s per sample (approximately 15 min in total). In addition, the presented results show that the suggested approach works for describing metabolic changes in different biofluids, indicating that this is a general approach for high-throughput predictive metabolite profiling, which could have important applications in areas such as plant functional genomics, drug toxicity, treatment efficacy and early disease diagnosis.
  •  
5.
  •  
6.
  • Thysell, Elin, et al. (författare)
  • Reliable Profile Detection in Comparative Metabolomics
  • 2007
  • Ingår i: Omics. - : Mary Ann Liebert. - 1536-2310 .- 1557-8100. ; 11:2, s. 209-224
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy for processing of metabolomic GC/MS data is presented. By considering the relationship between quantity and quality of detected profiles, representative data suitable for multiple sample comparisons and metabolite identification was generated. Design of experiments (DOE) and multivariate analysis was used to relate the changes in settings of the hierarchical multivariate curve resolution (H-MCR) method to quantitative and qualitative characteristics of the output data. These characteristics included number of resolved profiles, chromatographic quality in terms of reproducibility between analytical replicates, and spectral quality defined by purity and number of spectra containing structural information. The strategy was exemplified in two datasets: one containing 119 common metabolites, 18 of which were varied according to a DOE protocol; and one consisting of rat urine samples from control rats and rats exposed to a liver toxin. It was shown that the performance of the data processing could be optimized to produce metabolite data of high quality that allowed reliable sample comparisons and metabolite identification. This is a general approach applicable to any type of data processing where the important processing parameters are known and relevant output data characteristics can be defined. The results imply that this type of data quality optimization should be carried out as an integral step of data processing to ensure high quality data for further modeling and biological evaluation. Within metabolomics, this degree of optimization will be of high importance to generate models and extract biomarkers or biomarker patterns of biological or clinical relevance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy