SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonsson Stefan Professor) ;hsvcat:2"

Sökning: WFRF:(Jonsson Stefan Professor) > Teknik

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Qing (författare)
  • Mechanical properties of semi-solid Al castings : Role of stirring
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aluminum castings have been widely used in the automotive industry to reduce the vehicle's weight. However, the existence of casting defects significantly limits its application. The most common and detrimental defects in aluminum castings are porosity and oxides. The formation of the pores comes from the solute hydrogen and volumetric reduction during the solidification process, resulting in the gas and shrinkage pores, respectively. The oxides can be introduced by either the operation during the process or the originally existing oxides in the melt. To reduce these defects, optimizing the casting process and controlling the melt quality is essential.In this work, the Semisolid Metal (SSM) process was used as it can significantly reduce the formation of shrinkage pores. The main focuses were on the influence of stirring intensity on the formation of casting defects and, thus, the resultant mechanical properties. In addition, to control the original melt quality, particularly the amount of oxides, efforts were made to develop proper methods for the melt quality assessment.The results show that the slurry-making process, mainly through stirring intensity, can affect the casting defects significantly. On the one hand, the increasing stirring intensity can distribute the primary Al particles more homogeneously, reducing the pores in terms of size and number by increasing the permeability during the solidification process. On the other hand, the increasing stirring intensity can affect the size of oxides differently, depending on the composition, for instance, the Mg content.For the alloys with sufficient Mg, the oxides would be MgAl2O4, which are small films with numerous cracks. Under intensive stirring, the oxides can break down into small oxide particles. As a result, intensive stirring can improve ductility by reducing the formation of big pores. However, the oxides would mainly be Al2O3 films for alloys with low Mg content. In this case, the current stirring intensity is insufficient to break the oxide films. Instead, the increased stirring has introduced more oxide films into the melt. Consequently, in the casting with intensive stirring, the increasing oxide films dominated the ductility rather than the reduced porosity.The SSM castings exhibit better bending fatigue properties than the casting using the traditional high-pressure die casting (HPDC) process. This improvement is mainly due to the formation of the harder surface liquid segregation (SLS) layer on the SSM casting surface. Furthermore, compared with the standard SSM process, the castings using intensive stirring (hereinafter referred to as the modified SSM process) show similar but more reliable fatigue properties. This reliable fatigue property can be attributed to eliminating the big internal pores through intensive stirring, which results in local stress concentration and significantly reduces fatigue performance. Besides, due to the gradient stress distribution in the bending loading, the surface defects play a significant role in the fatigue properties. With the increase of the specimens’ thickness, the failure mechanisms changed.The shrinkage pores in the reduced pressure test (RPT) test play a significant role in the accuracy of melt quality assessment. A good correlation between the bifilm index (BI)/ density index (DI) and hydrogen content is observed for the RPT samples without significant shrinkage pores. In addition, the correlation between the BI and elongation is also strongly affected by the clusters of shrinkage pores due to the conflict between the definition of the BI and the influence of clusters of shrinkage pores on the ductility. Based on this, we proposed an optimized BI where the clusters of shrinkage pores were treated as single pores, increasing the reliability of the correlation between the BI and elongation. 
  •  
2.
  • Thibblin, Anders, 1980- (författare)
  • Thermal Barrier Coatings for Diesel Engines
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Reducing the heat losses in heavy-duty diesel engines is of importance for improving engine efficiency and reducing CO2 emissions. Depositing thermal barrier coatings (TBCs) onto engine components has been demonstrated to have great potential to reduce heat loss from the combustion chamber as well as from exhaust components. The overall aim of this thesis is to evaluate the thermal cycling lifetime and thermal insulation properties of TBCs for the purpose of reducing heat losses and thermal fatigue in heavy-duty diesel engines.In the thermal cycling test inside exhaust manifolds, nanostructured yttria-stabilized zirconia (YSZ) performed best, followed by YSZ with conventional microstructure and then La2Zr2O7. Forsterite and mullite could not withstand the thermal cycling conditions and displayed large cracks or spallation. Two sol-gel composite coatings displayed promising thermal cycling performance results in a furnace test under similar conditions.Thermal cycling testing of YSZ coatings having different types of microstructure, in a furnace at temperatures up to 800°C, indicated that the type of microstructure exerted a great influence. For the atmospheric plasma sprayed coatings, a segmented microstructure resulted in the longest thermal cycling lifetime. An even longer lifetime was seen for a plasma spray–physical vapour deposition (PS-PVD) coating.In situ heat flux measurements inside the combustion chamber indicated that plasma-sprayed Gd2Zr2O7 was the TBC material providing the largest heat flux reduction. This is explained by a combination of low thermal conductivity and high reflectance. The plasma-sprayed YSZ and La2Zr2O7 coatings provided very small heat flux reductions. Long-term testing indicated a running-in behaviour of YSZ and Gd2Zr2O7, with a reduction in heat flux due to the growth of microcracks in YSZ and the growth of macrocracks in Gd2Zr2O7.
  •  
3.
  • Zhang, Qing (författare)
  • Mechanical Properties of Semi-Solid Al Castings : Role of Stirring
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Semi-solid metal (SSM) casting has been widely used in automotive industries to reduce the weight. In RheoMetalTM process which is one of the variations of SSM, the slurry fabrication can be finished within 30 second and can the slurry making process can be integrated into a high pressure die casting (HPDC) route without significant adjustments, making the process a promising alternative for industrial application. However, the application of SSM is still limited due to the semi-solid deformation-induced casting defects, such as macrosegregation and large pores. Due to the short stirring duration, the inefficient stirring is the leading cause of defects formation. Another critical issue in the RheoMetalTM process is the oxidation during the stirring process, which results in the increase of oxides in the castings, reducing the mechanical properties.This study aims to investigate the ductility and the fatigue performance of SSM castings. The main focuses were on the role of the stirring and oxides. The quenched slurry was analyzed to evaluate the effect of the stirring on the particle distribution in the slurry, and its effect on the formation of pores and segregation was discussed. To investigate the oxidation during the slurry making process, two alloys with different Mg content were cast. Scanning electron microscopy (JEOL JSM-7001F SEM) equipped with Energy-dispersive X-ray spectroscopy (EDS) was used to identify the oxides on the fracture surface. Tensile test and fatigue test accompanied with direct current potential drop (DCPD) were performed to investigate the ductility and fatigue performance, respectively.The results suggest that the intensive stirring can avoid the formation of the large clusters, making the particle distribution homogeneous in the slurry. The Mg contents determined the types of the oxides formed in the slurry making process. For alloys with sufficient Mg, the oxides would be MgAl2O4, which exist as small films with numerous cracks, while a large oxides film will be formed in the case of low Mg content.The combined influence of porosity and oxides was concluded. In the 42000 alloy, because of the low Mg content, the ductility was dominated by the large oxide films. In contrast, in the Magsimal 59 alloy, the presence of small oxides (less than 0.2 mm in majority) leads to the influence of oxides on the elongation negligible. However, a good correlation was obtained between the largest pores and ductility.The fatigue test shows that the surface liquid segregation (SLS) determined the fatigue strength under cyclic bend loading, due to its higher hardness. The effect of the inner pores on the fatigue performance was negligible, as the maximum stress was applied on the surface.
  •  
4.
  • Ekström, Madeleine, 1984- (författare)
  • Oxidation and corrosion fatigue aspects of cast exhaust manifolds
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Emission regulations for heavy-duty diesel engines are becoming increasingly restrictive to limit the environmental impacts of exhaust gases and particles. Increasing the specific power output of diesel engines would improve fuel efficiency and greatly reduce emissions, but these changes could lead to increased exhaust gas temperature, increasing demands on the exhaust manifold material. This is currently the ferritic ductile cast iron alloy SiMo51, containing about 4 wt% Si and ~1 wt% Mo, which operates close to its fatigue and oxidation resistance limits at peak temperature (750C). To ensure high durability at higher temperatures, three different approaches to improving the life of exhaust manifolds were developed in this thesis.The first approach was to modify SiMo51 by adding different combinations of Cr and Ni to improve its high-temperature strength and oxidation resistance, or by applying a thermal barrier coating (TBC) to reduce the material temperature and thereby improve fatigue life. In the second approach, new materials for engine components, e.g. austenitic ductile iron and cast stainless steel, were investigated for their high-temperature fatigue and oxidation properties. In order to identify the most suitable alloys for this application, in the third the environmental effects of the corrosive diesel exhaust gas on the fatigue life of SiMo51 were investigated.The high-temperature oxidation resistance of SiMo51 at 700 and 800C in air was found to be improved by adding Cr, whereas Ni showed adverse effects. The effects of solid-solution hardening from Ni and precipitation hardening from Cr were low at 700C, with improvements only at lower temperatures. Applying a TBC system, providing thermal protection from a ceramic topcoat and oxidation protection from a metallic bond coat, resulted in only small reductions in material temperature, but according to finite element calculations still effectively improved the fatigue life of a turbo manifold. Possible alternative materials to SiMo51 identified were austenitic cast ductile iron Ni-resistant D5S and austenitic cast stainless steel HK30, which provided high durability of exhaust manifolds up to 800 and 900C, respectively. Corrosion fatigue testing of SiMo51 at 700C in diesel exhaust gas demonstrated that the corrosive gas reduced fatigue life by 30-50% compared with air and by 60-75% compared with an inert environment. The reduced fatigue life was associated with a mechanism whereby the crack tip oxidized, followed by crack growth. Thus another potential benefit of TBC systems is that the bond coat may reduce oxidation interactions and further improve fatigue life.These results can be used for selecting materials for exhaust applications. They also reveal many new research questions for future studies. Combining the different approaches of alloy modification, new material testing and improving the performance using coatings widened the scope of how component life in exhaust manifolds can be improved. Moreover, the findings on environmental interactions on SiMo51 fatigue provide a completely new understanding of these processes in ductile irons, important knowledge when designing components exposed to corrosive environments. The novel facility developed for high-temperature corrosion fatigue testing can be useful to other researchers working in this field. 
  •  
5.
  • Fahlkrans, Johan, 1980- (författare)
  • Effects of manufacturing chain on mechanical performance : Study on heat treatment of powertrain components
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The increasing demands for lightweight designs with high strength call for improved manufacturing processes regarding heat treatment of steel. The manufacturing process has considerable potential to improve the mechanical performance and to obtain more reliable results with less variation.The goal of this thesis is to establish new knowledge regarding improved manufacturing processes in industrial heat treatment applications. Three research questions with associated hypotheses are formulated. Process experiments, evaluation of the mechanical performance, and modelling of the fatigue behaviour assist in answering the questions.The gas quenching procedure following low-pressure carburising differs from the conventional procedure of gas carburising and oil quenching. It is shown that the introduction of a holding time during the low-temperature part of the quench has a positive effect on mechanical properties, with some 20 percent increase in fatigue strength. This is attributed to increased compressive surface residual stress and stabilisation of austenite.Tempering is a common manufacturing process step following hardening in order to increase the toughness of the steel. However, the research shows that the higher hardness from eliminating tempering from the manufacturing process is beneficial for contact fatigue resistance. The untempered steel showed not only less contact fatigue damage but also a different contact fatigue mechanism.Straightening of elongated components is made after heat treatment in order to compensate for distortions. The research shows that straightening of induction hardened shafts may lead to lowering of the fatigue strength of up to 20 percent. A fracture mechanics based model is developed to estimate the effects of straightening on fatigue strength.
  •  
6.
  • Xiang, Shengmei, 1991- (författare)
  • Oxidation, Creep and Fatigue Synergies in Cast Materials for Exhaust Manifolds
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The future development of engines of heavy-duty vehicles towards reduced CO2 emission will increase the exhaust gas temperature and render the exhaust atmosphere more corrosive. The current service material of exhaust gas components - a ferritic ductile cast iron called SiMo51 - will soon meet its upper-temperature limit. Three alternative materials were suggested in a previous study: SiMo1000 (ferritic, nodular cast iron), D5S (austenitic, nodular cast iron), and HK30 (austenitic, cast steel). Together with SiMo51 (reference) the alternative materials are investigated in the present thesis with respect to performance and degradation mechanisms, under the individual or collective influence of high-temperature fatigue, corrosion, and creep.Firstly, fatigue, corrosion and corrosion-fatigue at 800oC were studied to establish their degradation mechanisms and relative performance. The individual influence of fatigue and corrosion was studied using low-cycle fatigue (LCF) tests in argon, and oxidation tests in a synthetic exhaust gas (5%O2-10%CO2-5%H2O-1ppmSO2-N2(bal.)), respectively. The collective influence of fatigue and corrosion was studied using LCF test in the synthetic exhaust gas. The degradation mechanisms were analyzed through extensive characterization of the tested specimens. Different crack-initiation mechanisms were found for the various combinations of materials and atmospheres. In argon, crack initiation was generally caused by secondary phases at the surface (graphite in SiMo51/SiMo1000, graphite and intermetallics in D5S) and near-surface casting defects (in all materials). In the exhaust atmosphere, crack initiation was generally influenced by oxide intrusions (formed from oxidized graphite in SiMo51 and expressed as dendrite boundary corrosion in HK30), internal fracture of intermetallics (in D5S), decarburization creating microcracks/stress concentrations (in SiMo1000), and near-surface casting defects (in all materials). The relative performance was analyzed using fatigue and oxidation curves.Secondly, two improvements were attempted for SiMo1000, a modified casting geometry for improved graphite morphology and a surface treatment method, nitrocarburizing. The first attempt resulted in significantly reduced decarburization, decreased initial crack size formed by graphite/matrix debonding and an improved corrosion-fatigue life of 8 to 16 times. The second attempt resulted in two types of microcracks after the process and a self-sustained growth of the diffusion layer, when subjected to high-temperature corrosion. A strong corrosion-fatigue synergy was found, reducing the fatigue lifetime by 84-89%.Thirdly, the collective influence of fatigue and creep was studied for D5S using regular LCF tests (reference) and creep-fatigue tests, with either tension or compression dwell. Both dwell directions reduce fatigue life but promote different creep-fatigue-corrosion interactions. Tension dwell produces a clear creep-fatigue synergy, generating creep pinholes near graphite nodules. Typically, such damage is observed in regular creep tests of several months. Compression dwell decreases lifetime more than tension dwell due to increased peak tensile stress and a more pronounced surface crack initiation by an oxide wedging mechanism.The investigation in the present study gives a better understanding of the correlation between microstructure and corrosion-fatigue/creep-fatigue properties in materials used for exhaust gas components. Moreover, the combination of fatigue tests in argon/exhaust atmosphere, oxidation tests in the exhaust atmosphere, creep-fatigue tests, and creep tests from a previous study shows how corrosion, fatigue, and creep individually and synergistically affect the material performance at elevated temperature.
  •  
7.
  • Freitas de Abreu, Marcio (författare)
  • Cavitation Erosion Mechanisms in Cast Irons
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The research presented in this thesis investigated the mechanisms by which cavitation erosion damage develops in lamellar graphite iron (LGI) and austempered ductile irons (ADIs). This has been achieved by image sequences of surface erosion on test samples in tandem with weight change measurements. Cavitation erosion is caused by the appearance and collapse of bubbles in a liquid which undergoes rapid pressure oscillations. Imploding bubbles release heat, shockwaves and high-speed microjets which may strike nearby solid walls and damage them.The heavy-duty automotive industry encounters this problem in the engine cooling system. The combustion chamber requires precise temperature control for optimal operation and excess heat must be removed by a liquid coolant. In trucks, the coolant liquid achieves this by circulating around the cylinder liner, a hollow cylindrical part that encloses the combustion chamber and prevents its gases from escaping. However, the engine’s intense vibrations create repeated pressure variations in the coolant, and bubbling ensues. With prolonged operation, the cylinder liner’s wet outer wall may be severely worn, resulting in surface roughening, eroded patches and pits. Cavitation is responsible for great losses due to vehicle downtime and maintenance costs. The present work aims, therefore, at analyzing the behavior under cavitation exposure of cast irons that are currently used, or being considered for use, in the cooling system.Cylinder liners are currently made of lamellar graphite iron with a matrix structure consisting of pearlite and a network of steadite, and the analysis for this material has been presented in Paper 1. Austempered ductile irons are candidate materials for pumps and other components of the cooling system due to their very good mechanical properties; three ADIs of increasing hardness, obtained from different heat treatments of a spheroidal graphite iron, have been analyzed in Paper 2. Experiments consisted of an ultrasonic vibratory probe to which material samples were attached and subsequently immersed in a beaker containing engine coolant. The samples were weighed and photographed in an SEM after several predetermined time intervals. This produced a detailed sequence of images which, in combination with mass loss data, can explain the mechanisms by which cavitation damage initiates and develops in these materials. The text of this thesis summarizes the findings presented in the appended articles and compares the behavior of LGI and ADI.
  •  
8.
  • Zeng, Zhipeng, 1977- (författare)
  • Deformation Behaviour, Microstructure and Texture Evolution of CP Ti Deformed at Elevated Temperatures
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the present work, deformation behavior, texture and microstructure evolution of commercially pure titanium (CP Ti) are investigated by electron backscattered diffraction (EBSD) after compression tests at elevated temperatures. By analysing work hardening rate vs. flow stress, the deformation behaviour can be divided into three groups, viz. three-stage work hardening, two-stage work hardening and flow softening. A new deformation condition map is presented, dividing the deformation behavior of CP Ti into three distinct zones which can be separated by two distinct values of the Zener-Hollomon parameter. The deformed microstructures reveal that dynamic recovery is the dominant deformation mechanism for CP Ti during hot working. It is the first time that the Schmid factor and pole figures are used to analyse how the individual slip systems activate and how their activities evolve under various deformation conditions. Two constitutive equations are proposed in this work, one is for single peak dynamic recrystallization (DRX), the other is specially for CP Ti deformed during hot working. After the hot compression tests, some stress-strain curves show a single peak, leading to the motivation of setting up a DRX model. However, the examinations of EBSD maps and metallography evidently show that the deformation mechanism is dynamic recovery rather than DRX. Then, the second model is set up. The influence of the deformation conditions on grain size, texture and deformation twinning is systematically investigated. The results show that {10-12} twinning only occurs at the early stage of deformation. As the strain increases, the {10-12} twinning is suppressed while {10- 11} twinning appears. Three peaks are found in the misorientation frequency-distribution corresponding to basal fiber texture, {10-11} and {10-12} twinning, respectively. A logZ-value of 13 is found to be critical for both the onset of {10-11} compressive twinning and the break point for the subgrain size. The presence of {10-11} twinning is the key factor for effectively reducing the deformed grain size. The percentage of low angle grain boundaries decreases with increasing Z-parameter, falling into a region separated by two parallel lines with a common slope and 10% displacement. After deformation, three texture components can be found, one close to the compression direction, CD, one 10~30° to CD and another 45° to CD.
  •  
9.
  • Ekström, Madeleine, 1984- (författare)
  • Development of a ferritic ductile cast iron for improved life in exhaust applications
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Due to coming emission legislations, the temperature is expected to increase in heavy-duty diesel engines, specifically in the hot-end of the exhaust system affecting components, such as exhaust- and turbo manifolds. Since the current material in the turbo manifold, a ductile cast iron named SiMo51, is operating close to its limits there is a need for material development in order to maintain a high durability of these components. When designing for increased life, many material properties need to be considered, for example, creep-, corrosion- and fatigue resistance. Among these, the present work focuses on the latter two up to 800°C improving the current material by additions of Cr, for corrosion resistance, and Ni, for mechanical properties. The results show improved high-temperature corrosion resistance in air from 0.5 and 1wt% Cr additions resulting in improved barrier layer at the oxide/metal interface. However, during oxidation in exhaust-gases, which is a much more demanding environment compared to air, such improvement could not be observed. Addition of 1wt% Ni was found to increase the fatigue life up to 250°C, resulting from solution strengthening of the ferritic matrix. However, Ni was also found to increase the oxidation rates, as no continuous SiO2-barrier layers were formed in the presence of Ni. Since none of the tested alloys showed improved material properties in exhaust gases at high temperature, it is suggested that the way of improving performance of exhaust manifolds is to move towards austenitic ductile cast irons or cast stainless steels. One alloy showing good high-temperature oxidation properties in exhaust atmospheres is an austenitic cast stainless steel named HK30. This alloy formed adherent oxide scales during oxidation at 900°C in gas mixtures of 5%O2-10%H2O-85%N2 and 5%CO2-10%H2O-85%N2 and in air. In the two latter atmospheres, compact scales of (Cr, Mn)-spinel and Cr2O3 were formed whereas in the atmosphere containing 5%O2 and 10%H2O, the scales were more porous due to increased Fe-oxide formation. Despite the formation of a protective, i.e. compact and adherent, oxide scale on HK30, exposure to exhaust-gas condensate showed a detrimental effect in form of oxide spallation and metal release. Thus, proving the importance of taking exhaust-gas condensation, which may occur during cold-start or upon cooling of the engine, into account when selecting a new material for exhaust manifolds. 
  •  
10.
  • Bäcke, Linda, 1977- (författare)
  • Modeling the Microstructural Evolution during Hot Deformation of Microalloyed Steels
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    •   This thesis contains the development of a physically-based model describing the microstructural evolution during hot deformation of microalloyed steels. The work is mainly focused on the recrystallization kinetics. During hot rolling, the repeated deformation and recrystallization provides progressively refined recrystallized grains. Also, recrystallization enables the material to be deformed more easily and knowledge of the recrystallization kinetics is important in order to predict the required roll forces. Hot strip rolling is generally conducted in a reversing roughing mill followed by a continuous finishing mill. During rolling in the roughing mill the temperature is high and complete recrystallization should occur between passes. In the finishing mill the temperature is lower which means slower recrystallization kinetics and partial or no recrystallization often occurs. If microalloying elements such as Nb, Ti or V are present, the recrystallization can be further retarded by either solute drag or particle pinning. When recrystallization is completely retarded and strain is accumulated between passes, the austenite grains will be severely deformed, i.e. pancaking occurs. Pancaking of the grains provides larger amount of nucleation sites for ferrite grains upon transformation and hence a finer ferrite grain size is achieved. In this work a physically-based model has been used to describe the microstructural evolution of austenite. The model is built-up by several sub-models describing dislocation density evolution, recrystallization, grain growth and precipitation. It is based on dislocation density theory where the generated dislocations during deformation provide the driving force for recrystallization. In the model, subgrains act as nuclei for recrystallization and the condition for recrystallization to start is that the subgrains reach a critical size and configuration. The retarding effect due to elements in solution and as precipitated particles is accounted for in the model. To verify and validate the model axisymmetric compression tests combined with relaxation were modeled and the results were compared with experimental data. The precipitation sub-model was verified by the use of literature data. In addition, rolling in the hot strip mill was modeled using process data from the hot strip mill at SSAB Strip Products Division. The materials investigated were plain C-Mn steels and Nb microalloyed steels. The results from the model show good agreement with measured data.  
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy