SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jorgensen Torben) "

Sökning: WFRF:(Jorgensen Torben)

  • Resultat 1-10 av 76
  • [1]234567...8Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (&gt; 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.</p>
2.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
  • 2014
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 46:4, s. 357-
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1-3, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of -150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) 4 and harbors a common variant (p. Trp325Arg) associated with T2D risk and glucose and proinsulin levels5-7. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 x 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p. Lys34Serfs* 50) demonstrated reduced glucose levels (-0.17 s. d., P = 4.6 x 10(-4)). The two most common proteintruncating variants (p. Arg138* and p. Lys34Serfs* 50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk(8,9), and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts(10-15). In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.</p>
  •  
3.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
  • 2014
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 46:4, s. 357-363
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1-3, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of -150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) 4 and harbors a common variant (p. Trp325Arg) associated with T2D risk and glucose and proinsulin levels5-7. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 x 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p. Lys34Serfs* 50) demonstrated reduced glucose levels (-0.17 s. d., P = 4.6 x 10(-4)). The two most common proteintruncating variants (p. Arg138* and p. Lys34Serfs* 50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk(8,9), and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts(10-15). In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.</p>
  •  
4.
  • Flannick, Jason, et al. (författare)
  • Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (&gt; 80% of low-frequency coding variants in similar to 82 K Europeans via the exome chip, and similar to 90% of low-frequency non-coding variants in similar to 44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.</p>
5.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.</p>
  •  
6.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.</p>
  •  
7.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
8.
  • Gaulton, Kyle J., et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci
  • 2015
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 47:12, s. 1415-
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.</p>
  •  
9.
  • Gaulton, Kyle J., et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci
  • 2015
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 47:12, s. 1415-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.</p>
  •  
10.
  • Gretarsdottir, Solveig, et al. (författare)
  • Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:8, s. 71-692
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a genome-wide association study on 1,292 individuals with abdominal aortic aneurysms (AAAs) and 30,503 controls from Iceland and The Netherlands, with a follow-up of top markers in up to 3,267 individuals with AAAs and 7,451 controls. The A allele of rs7025486 on 9q33 was found to associate with AAA, with an odds ratio (OR) of 1.21 and P = 4.6 x 10(-10). In tests for association with other vascular diseases, we found that rs7025486[A] is associated with early onset myocardial infarction (OR = 1.18, P = 3.1 x 10(-5)), peripheral arterial disease (OR = 1.14, P = 3.9 x 10(-5)) and pulmonary embolism (OR = 1.20, P = 0.00030), but not with intracranial aneurysm or ischemic stroke. No association was observed between rs7025486[A] and common risk factors for arterial and venous diseases-that is, smoking, lipid levels, obesity, type 2 diabetes and hypertension. Rs7025486 is located within DAB2IP, which encodes an inhibitor of cell growth and survival.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 76
  • [1]234567...8Nästa
Åtkomst
fritt online (19)
Typ av publikation
tidskriftsartikel (76)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt (1)
Författare/redaktör
Jorgensen, Torben (62)
Hansen, Torben, (52)
Pedersen, Oluf, (51)
Grarup, Niels, (47)
Wareham, Nicholas J (43)
Laakso, Markku, (43)
visa fler...
Langenberg, Claudia (41)
Mohlke, Karen L (41)
Salomaa, Veikko (41)
Boehnke, Michael (40)
Linneberg, Allan, (38)
Kuusisto, Johanna, (37)
McCarthy, Mark I (36)
Scott, Robert A (35)
Morris, Andrew P. (35)
Ingelsson, Erik (34)
Tuomilehto, Jaakko (34)
Lindgren, Cecilia M. (33)
Frayling, Timothy M. (32)
Lind, Lars, (31)
Franks, Paul W, (31)
Hattersley, Andrew T (31)
Collins, Francis S. (31)
Boerwinkle, Eric (31)
Gudnason, Vilmundur (30)
Barroso, Inês (30)
Jackson, Anne U. (30)
Stringham, Heather M ... (30)
Zeggini, Eleftheria (29)
Grallert, Harald (29)
Boeing, Heiner (28)
Stancáková, Alena, (28)
Ridker, Paul M., (28)
Loos, Ruth J. F. (28)
Mahajan, Anubha (28)
Florez, Jose C. (28)
Meigs, James B. (27)
Balkau, Beverley (27)
Bonnycastle, Lori L. (27)
Jorgensen, Marit E., (27)
Froguel, Philippe, (26)
Hu, Frank B., (26)
Peters, Annette (26)
Thorleifsson, Gudmar (26)
Esko, Tonu (26)
Dupuis, Josée (26)
Tuomi, Tiinamaija, (25)
Luan, Jian'an (25)
Steinthorsdottir, Va ... (25)
Lu, Yingchang (25)
visa färre...
Lärosäte
Umeå universitet (31)
Lunds universitet (20)
Uppsala universitet (20)
Karolinska Institutet (13)
Göteborgs universitet (5)
Stockholms universitet (3)
visa fler...
Högskolan Kristianstad (1)
Kungliga Tekniska Högskolan (1)
visa färre...
Språk
Engelska (76)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (70)
Naturvetenskap (8)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy