SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kågedal Katarina) ;hsvcat:1"

Sökning: WFRF:(Kågedal Katarina) > Naturvetenskap

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Sandin, Linnea, et al. (författare)
  • Beneficial effects of increased lysozyme levels in Alzheimer’s disease modelled in Drosophila melanogaster
  • 2016
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 283:19, s. 3508-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic polymorphisms of immune genes that associate with higher risk to develop Alzheimer’s disease (AD) have led to an increased research interest on the involvement of the immune system in AD pathogenesis. A link between amyloid pathology and immune gene expression was suggested in a genome-wide gene expression study of transgenic amyloid mouse models. In this study, the gene expression of lysozyme, a major player in the innate immune system, was found to be increased in a comparable pattern as the amyloid pathology developed in transgenic mouse models of AD. A similar pattern was seen at protein levels of lysozyme in human AD brain and CSF, but this lysozyme pattern was not seen in a tau transgenic mouse model. Lysozyme was demonstrated to be beneficial for different Drosophila melanogaster models of AD. In flies that expressed Aβ1-42 or AβPP together with BACE1 in the eyes, the rough eye phenotype indicative of toxicity was completely rescued by coexpression of lysozyme. In Drosophila flies bearing the Aβ1-42 variant with the Arctic gene mutation, lysozyme increased the fly survival and decreased locomotor dysfunction dose dependently. An interaction between lysozyme and Aβ1-42 in the Drosophila eye was discovered. We propose that the increased levels of lysozyme, seen in mouse models of AD and in human AD cases, were triggered by Aβ1-42 and caused a beneficial effect by binding of lysozyme to toxic species of Aβ1-42, which prevented these from exerting their toxic effects. These results emphasize the possibility of lysozyme as biomarker and therapeutic target for AD.
  •  
4.
  • Bergkvist, Liza, 1985- (författare)
  • Amyloid-β and lysozyme proteotoxicity in Drosophila : Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the work presented this thesis, two different conditions that are classified as protein misfolding diseases: Alzheimer's disease and lysozyme amyloidosis and proteins that could have a beneficial effect in these diseases, have been studied using Drosophila melanogaster, commonly known as the fruit fly. The fruit fly has been used for over 100 years to study and better understand fundamental biological processes. Although the fruit fly, unlike humans, is an invertebrate, many of its central biological mechanisms are very similar to ours. The first transgenic flies were designed in the early 1980s, and since then, the fruit fly has been one of the most widely used model organisms in studies on the effects of over-expressed human proteins in a biological system; one can regard the fly as a living, biological test tube. For  most proteins, it is necessary that they fold into a three-dimensional structure to function properly. But sometimes the folding goes wrong; this may be due to mutations that make the protein unstable and subject to misfolding. A misfolded protein molecule can then aggregate with other misfolded proteins. In Alzheimer's disease, which is the most common form of dementia, protein aggregates are present in the brains of patients. These aggregates are composed of the amyloid-β (Aβ) peptide, a small peptide of around 42 amino acids which is cleaved from the larger, membrane-bound, protein AβPP by two different enzymes, BACE1 and γ-secretase. In the first part of this thesis, two different fly models for Alzheimer’s disease were used: the Aβ fly model, which directly expresses the Aβ peptide, and the AβPP-BACE1 fly model, in which all the components necessary to produce the Aβ peptide in the fly are expressed in the fly central nervous system (CNS). The two different fly models were compared and the results show that a significantly smaller amount of the Aβ peptide is needed to achieve the same, or an even greater, toxic effect in the AβPP-BACE1 model compared to the Aβ model. In the second part of the thesis, these two fly models for Alzheimer’s disease were again used, but now to investigate whether lysozyme, a protein involved in our innate immune system, can counteract the toxic effect of Aβ generated in the fly models. And indeed, lysozyme is able to save the flies from Aβ-induced toxicity. Aβ and lysozyme were found to interact with each other in vivo. The second misfolding disease studied in this thesis is lysozyme amyloidosis. It is a rare, dominantly inherited amyloid disease in which mutant variants of lysozyme give rise to aggregates, weighing up to several kilograms, that accumulate around the kidneys and liver, eventually leading to organ failure. In the third part of this thesis, a fly model for lysozyme amyloidosis was used to study the effect of co-expressing the serum amyloid P component (SAP), a protein that is part of all protein aggregates found within this disease class. SAP is able to rescue the toxicity induced by expressing the mutant variant of lysozyme, F57I, in the fly's CNS. To further investigate how SAP was able to do this, double-expressing lysozyme flies, which exhibit stronger disease phenotypes than those of the single-expressing lysozyme flies previously studied, were used in the fourth part of this thesis. SAP was observed to reduce F57I toxicity and promote F57I to form aggregates with more distinct amyloid characteristics. In conclusion, the work included in this thesis demonstrates that: i) Aβ generated from AβPP processing in the fly CNS results in higher proteotoxicity compared with direct expression of Aβ from the transgene, ii) lysozyme can prevent Aβ proteotoxicity in Drosophila and could thus be a potential therapeutic molecule to treat Alzheimer’s disease and iii) in a Drosophila model of lysozyme amyloidosis, SAP can prevent toxicity from the disease-associated lysozyme variant F57I and promote formation of aggregated lysozyme morphotypes with amyloid properties; this is important to take into account when a reduced level of SAP is considered as a treatment strategy for lysozyme amyloidosis.
  •  
5.
  • Sandin, Linnea, 1984- (författare)
  • The influence of lysozyme and oligothiophenes on amyloid-β toxicity in models of Alzheimer’s disease
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer’s disease (AD) is a neurodegenerative disease and the most common cause of dementia worldwide. Apart from dominantly inherited mutations, age is the major risk factor and as life expectancy increases the prevalence for AD escalates dramatically. AD causes substantial problems for the affected persons and their families, and the society suffers economically. To date the available treatments only temporarily relieve the symptoms, wherefore the development of a cure is of utmost importance. The etiology of AD is still inconclusive but many believe that small aggregates (oligomers) of the protein amyloid-β (Aβ) are central for the onset of AD.The aims of this thesis were to investigate how different molecules affect the aggregation and toxicity of Aβ. In paper I and II, two oligothiophenes were studied; p-FTAA and h-FTAA and in paper III and IV the inflammatory protein lysozyme was explored. Differentiated neuroblastoma cells and Drosophila melanogaster were used as models of AD to address the issue.The results show that p-FTAA rescues neuroblastoma cells from Aβ toxicity when Aβ is coaggregated with lysozyme. Various biophysical studies show that the co-aggregation increases the formation of fibrillar Aβ structures rich in β-sheets. Noteworthy, these Aβ fibrils were more resistant to both degradation and denaturation, and less prone to propagate seeding from Aβ monomers. Furthermore, h-FTAA, but not p-FTAA, was able to protect neuroblastoma cell toxicity when exposed to Aβ with the Arctic mutation (AβArc), which probably reflects the weaker binding of AβArc to p-FTAA, compared to h-FTAA.Lysozyme levels were increased in CSF from patients that were both biochemically and clinically diagnosed with AD. In mice models of AD it was revealed that the mRNA increase in lysozyme correlates to increased Aβ pathology, but not to tau pathology, indicating that Aβ could drive the expression of lysozyme. To evaluate the effect for increased expression of lysozyme, co-expression of lysozyme was achieved in flies that expressed Aβ in the retina of the eyes, or in flies that expressed AβArc in the central nervous system. In all AD fly models, co-expression of lysozyme protected the cells from the Aβ induced toxicity. Of note, flies that expressed the toxic AβArc in the CNS of the flies showed an improvement in both lifespan and activity. Finally, we demonstrate that Aβ aggregating in the presence of lysozyme inhibits the cellular uptake of Aβ and also the cytotoxic effect of Aβ.The work included in this thesis demonstrates that the oligothiophenes p-FTAA and h-FTAA, and also lysozyme have the potential to be used as treatment strategies for sporadic AD, but remarkable, also in familial AD with the highly toxic Arctic mutation. The protective mechanism of p-FTAA seems to be attributed to the ability to generate stable Aβ fibrils with reduced seeding capacity, and that lysozyme inhibits the neuronal uptake of Aβ, which could prevent both the intracellular toxicity and cell-to-cell transmission of Aβ.
  •  
6.
  • Boman, Andrea, et al. (författare)
  • Distinct lysosomal network protein profiles in parkinsonian syndrome cerebrospinal fluid
  • 2016
  • Ingår i: Journal of Parkinson's Disease. - : IOS Press. - 1877-7171 .- 1877-718X. ; 6:2, s. 307-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Clinical diagnosis of parkinsonian syndromes like Parkinson’s disease, corticobasal degeneration and progressive supranuclear palsy is hampered by overlapping symptomatology and lack of biomarkers for diagnosis, and definitive diagnosis is only possible post-mortem. Since impaired protein degradation plays an important role in many neurodegenerative disorders, we hypothesized that levels and profiles of lysosomal network proteins in cerebrospinal fluid could be changed in these parkinsonian syndromes.Methods: Cerebrospinal fluid samples were collected from Parkinson’s disease patients (n=18), clinically diagnosed 4-repeat tauopathy patients, corticobasal syndrome (n=6) and progressive supranuclear palsy (n=5), pathologically diagnosed progressive supranuclear palsy (n=8) and corticobasal degeneration patients (n=7). Each patient set was compared to its appropriate control group consisting of the same number of age and gender matched individuals. Lysosomal network protein levels were detected via Western blotting.Results: Lysosomal network proteins have markedly different cerebrospinal fluid protein levels and profiles in Parkinson’s disease, corticobasal degeneration and progressive supranuclear palsy. Lysosomal-associated membrane proteins 1 and 2 were significantly decreased in Parkinson´s disease; early endosomal antigen 1 was decreased and lysozyme increased in progressive supranuclear palsy; and lysosomal-associated membrane proteins 1 and 2, microtubule-associated protein 1 light chain 3 and lysozyme were increased in corticobasal degeneration.Conclusions: Lysosomal network proteins hold promise of being interesting novel candidates for biomarker studies and for elucidating disease mechanisms of Parkinson’s disease, corticobasal degeneration and progressive supranuclear palsy, but further validation studies will be needed to assess the specificity and the predictive value of these proteins in CSF.
  •  
7.
  • Boman, Andrea, et al. (författare)
  • The role of LAMP-2 in AβPP processing and Aβ degradation; implications for Alzheimer’s Disease
  • 2015
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Dysfunction in the lysosomal network, i.e., the endosomal, lysosomal and autophagy systems, are implicated in the pathways in Alzheimer’s disease brain pathology. This dysfunction is mirrored in the cerebrospinal fluid where a specific subset of lysosomal network proteins are found at elevated levels, lysosomal associated membrane protein-2 (LAMP-2) being one of the identified lysosomal proteins. Here we report that hippocampus and frontal cortex in Alzheimer’s disease cases have increased mRNA and protein expression of LAMP-2, and thus these brain areas are likely involved in the increased LAMP-2 levels seen in cerebrospinal fluid from Alzheimer’s disease patients. The increased LAMP-2 levels correlated with increased levels of β-amyloid1-42 (Aβ1-42). Oligomeric Aβ1-42 caused an upregulation of intracellular LAMP-2 in neuroblastoma cells, but did not trigger the release of LAMP-2 to the extracellular milieu, indicating that other cell types or mechanisms are responsible for the LAMP-2 release seen in cerebrospinal fluid. Overexpression of LAMP-2 in neuroblastoma cells caused a trend of reduction of secreted Aβ1-42 and changed the processing pattern of the Aβ precursor protein. These results indicate that Aβ1-42 mediated increase of LAMP-2 expression can act as a regulator of Aβ generation and secretion. LAMP-2 overexpression did not change the cellular uptake of extracellularly added Aβ1-42, but caused a delayed clearance of Aβ1-42. Whether the prolonged intracellular localization of Aβ1-42 in LAMP-2 overexpressing cells can change the transmission or degradation of Aβ remains to be investigated.
  •  
8.
  • Civitelli, Livia, et al. (författare)
  • The Luminescent Oligothiophene p-FTAA Converts Toxic A beta(1-42) Species into Nontoxic Amyloid Fibers with Altered Properties
  • 2016
  • Ingår i: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 291:17, s. 9233-9243
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation of the amyloid-(beta) peptide (A beta) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the A beta peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the A beta fibrillation pathway may be a valid approach to reduce A beta cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic A beta species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting A beta-mediated cytotoxicity. Moreover, p-FTAA bound to early formed A beta species and induced a rapid formation of beta-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable A beta species that were nontoxic which indicates that p-FTAA might have therapeutic potential.
  •  
9.
  • Helmfors, Linda, et al. (författare)
  • Protective properties of lysozyme on β-amyloid pathology : implications for Alzheimer disease
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 83, s. 122-133
  • Tidskriftsartikel (refereegranskat)abstract
    • The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
  •  
10.
  • Bergkvist, Liza, et al. (författare)
  • Mapping pathogenic processes contributing to neurodegeneration in Drosophila models of Alzheimers disease
  • 2020
  • Ingår i: FEBS Open Bio. - : WILEY. - 2211-5463. ; 10:3, s. 338-350
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimers disease (AD) is the most common form of dementia, affecting millions of people and currently lacking available disease-modifying treatments. Appropriate disease models are necessary to investigate disease mechanisms and potential treatments. Drosophila melanogaster models of AD include the A beta fly model and the A beta PP-BACE1 fly model. In the A beta fly model, the A beta peptide is fused to a secretion sequence and directly overexpressed. In the A beta PP-BACE1 model, human A beta PP and human BACE1 are expressed in the fly, resulting in in vivo production of A beta peptides and other A beta PP cleavage products. Although these two models have been used for almost two decades, the underlying mechanisms resulting in neurodegeneration are not yet clearly understood. In this study, we have characterized toxic mechanisms in these two AD fly models. We detected neuronal cell death and increased protein carbonylation (indicative of oxidative stress) in both AD fly models. In the A beta fly model, this correlates with high A beta(1-42) levels and down-regulation of the levels of mRNA encoding lysosomal-associated membrane protein 1, lamp1 (a lysosomal marker), while in the A beta PP-BACE1 fly model, neuronal cell death correlates with low A beta(1-42) levels, up-regulation of lamp1 mRNA levels and increased levels of C-terminal fragments. In addition, a significant amount of A beta PP/A beta antibody (4G8)-positive species, located close to the endosomal marker rab5, was detected in the A beta PP-BACE1 model. Taken together, this study highlights the similarities and differences in the toxic mechanisms which result in neuronal death in two different AD fly models. Such information is important to consider when utilizing these models to study AD pathogenesis or screening for potential treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (8)
annan publikation (2)
doktorsavhandling (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Kågedal, Katarina (11)
Brorsson, Ann-Christ ... (5)
Sandin, Linnea (4)
Janefjord, Camilla (3)
Wang, Mei (2)
Kominami, Eiki (2)
visa fler...
Bonaldo, Paolo (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Nath, Sangeeta (2)
Liu, Wei (2)
Clarke, Robert (2)
Blennow, Kaj (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Zetterberg, Henrik (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Halliday, Glenda (2)
Garner, Brett (2)
Saftig, Paul (2)
Przyklenk, Karin (2)
Noda, Takeshi (2)
Zhao, Ying (2)
Miller, Bruce (2)
Kampinga, Harm H. (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Okamoto, Koji (2)
Olsson, Stefan (2)
Layfield, Robert (2)
Schorderet, Daniel F ... (2)
Hofman, Paul (2)
Lingor, Paul (2)
visa färre...
Lärosäte
Linköpings universitet (13)
Karolinska Institutet (3)
Göteborgs universitet (2)
Lunds universitet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy