SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kågedal Katarina) ;pers:(Johansson Ann Charlotte)"

Sökning: WFRF:(Kågedal Katarina) > Johansson Ann Charlotte

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Appelqvist, Hanna, et al. (författare)
  • Lysosome-Mediated Apoptosis is Associated with Cathepsin D-Specific Processing of Bid at Phe24,Trp48, and Phe183
  • 2012
  • Ingår i: Annals of Clinical and Laboratory Science. - : Institute for Clinical Science. - 0091-7370 .- 1550-8080. ; 42:3, s. 231-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Bax-mediated permeabilization of the outer mitochondrial membrane and release of apoptogenic factors into the cytosol are key events that occur during apoptosis. Likewise, apoptosis is associated with permeabilization of the lysosomal membrane and release of lysosomal cathepsins into the cytosol. This report identifies proteolytically active cathepsin D as an important component of apoptotic signaling following lysosomal membrane permeabilization in fibroblasts. Lysosome-mediated cell death is associated with degradation of Bax sequestering 14-3-3 proteins, cleavage of the Box activator Bid, and translocation of Box to mitochondria, all of which were cathepsin D-dependent. Processing of Bid could be reproduced by enforced lysosomal membrane permeabilization, using the lysosomotropic detergent O-methyl-serine dodecylamine hydrochloride (MSDH). We identified three cathepsin D-specific cleavage sites in Bid, Phe24, Trp48, and Phe183. Cathepsin D-cleaved Bid induced Bax-mediated release of cytochrome c from purified mitochondria, indicating that the fragments generated are functionally active. Moreover, apoptosis was associated with cytosolic acidification, thereby providing a more favorable environment for the cathepsin D-mediated cleavage of Bid. Our study suggests that cytosolic cathepsin D triggers Bax-mediated cytochrome c release by proteolytic activation of Bid.
  •  
2.
  •  
3.
  • Johansson, Ann-Charlotte, et al. (författare)
  • Regulation of apoptosis-associated lysosomal membrane permeabilization
  • 2010
  • Ingår i: APOPTOSIS. - : Springer Science Business Media. - 1360-8185 .- 1573-675X. ; 15:5, s. 527-540
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. The mechanism underlying LMP is still incompletely understood; however, a growing body of evidence suggests that LMP may be governed by several distinct mechanisms that are likely engaged in a death stimulus- and cell-type-dependent fashion. In this review, factors contributing to permeabilization of the lysosomal membrane including reactive oxygen species, lysosomal membrane lipid composition, proteases, p53, and Bcl-2 family proteins, are described. Potential mechanisms to safeguard lysosomal integrity and confer resistance to lysosome-dependent cell death are also discussed.
  •  
4.
  • Kågedal, Katarina, et al. (författare)
  • Lysosomal membrane permeabilization during apoptosis : Involvement of Bax?
  • 2005
  • Ingår i: International journal of experimental pathology (Print). - : John Wiley & Sons. - 0959-9673 .- 1365-2613. ; 86:5, s. 309-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Bcl-2 family members have long been known to control permeabilization of the mitochondrial membrane during apoptosis, but involvement of these proteins in lysosomal membrane permeabilization (LMP) was not considered until recently. The aim of this study was to investigate the mechanism underlying the release of lysosomal proteases to the cytosol seen during apoptosis, with special emphasis on the role of Bax. In human fibroblasts, exposed to the apoptosis-inducing drug staurosporine (STS), the release of the lysosomal protease cathepsin D to the cytosol was observed by immunocytochemistry. In response to STS treatment, there was a shift in Bax immunostaining from a diffuse to a punctate pattern. Confocal microscopy showed co-localization of Bax with both lysosomes and mitochondria in dying cells. Presence of Bax at the lysosomal membrane was confirmed by immuno-electron microscopy. Furthermore, when recombinant Bax was incubated with pure lysosomal fractions, Bax inserted into the lysosomal membrane and induced the release of lysosomal enzymes. Thus, we suggest that Bax is a mediator of LMP, possibly promoting the release of lysosomal enzymes to the cytosol during apoptosis.
  •  
5.
  • Nilsson, Cathrine, 1978-, et al. (författare)
  • Cytosolic acidification and lysosomal alkalinization during TNF-α induced apoptosis in U937 cells
  • 2006
  • Ingår i: Apoptosis (London). - : Springer Netherlands. - 1360-8185 .- 1573-675X. ; 11:7, s. 1149-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis is often associated with acidification of the cytosol and since loss of lysosomal proton gradient and release of lysosomal content are early events during apoptosis, we investigated if the lysosomal compartment could contribute to cytosolic acidification. After exposure of U937 cells to tumor necrosis factor-α, three populations; healthy, pre-apoptotic, and apoptotic cells, were identified by flow cytometry. These populations were investigated regarding intra-cellular pH and apoptosis-associated events. There was a drop in cytosolic pH from 7.2 ± 0.1 in healthy cells to 6.8 ± 0.1 in pre-apoptotic, caspase-negative cells. In apoptotic, caspase-positive cells, the pH was further decreased to 5.7 ± 0.04. The cytosolic acidification was not affected by addition of specific inhibitors towards caspases or the mitochondrial F0F1-ATPase. In parallel to the cytosolic acidification, a rise in lysosomal pH from 4.3 ± 0.3, in the healthy population, to 4.8 ± 0.3 and 5.5 ± 0.3 in the pre-apoptotic- and apoptotic populations, respectively, was detected. In addition, lysosomal membrane permeability increased as detected as release of cathepsin D from lysosomes to the cytosol in pre-apoptotic and apoptotic cells. We, thus, suggest that lysosomal proton release is the cause of the cytosolic acidification of U937 cells exposed to TNF-α.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy