SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kågedal Katarina) ;pers:(Zetterberg Henrik)"

Sökning: WFRF:(Kågedal Katarina) > Zetterberg Henrik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Armstrong, Andrea, et al. (författare)
  • Lysosomal Network Proteins as Potential Novel CSF Biomarkers for Alzheimers Disease
  • 2014
  • Ingår i: Neuromolecular medicine. - : Humana Press. - 1535-1084 .- 1559-1174. ; 16:1, s. 150-160
  • Tidskriftsartikel (refereegranskat)abstract
    • The success of future intervention strategies for Alzheimers disease (AD) will likely rely on the development of treatments starting early in the disease course, before irreversible brain damage occurs. The pre-symptomatic stage of AD occurs at least one decade before the clinical onset, highlighting the need for validated biomarkers that reflect this early period. Reliable biomarkers for AD are also needed in research and clinics for diagnosis, patient stratification, clinical trials, monitoring of disease progression and the development of new treatments. Changes in the lysosomal network, i.e., the endosomal, lysosomal and autophagy systems, are among the first alterations observed in an AD brain. In this study, we performed a targeted search for lysosomal network proteins in human cerebrospinal fluid (CSF). Thirty-four proteins were investigated, and six of them, early endosomal antigen 1 (EEA1), lysosomal-associated membrane proteins 1 and 2 (LAMP-1, LAMP-2), microtubule-associated protein 1 light chain 3 (LC3), Rab3 and Rab7, were significantly increased in the CSF from AD patients compared with neurological controls. These results were confirmed in a validation cohort of CSF samples, and patients with no neurochemical evidence of AD, apart from increased total-tau, were found to have EEA1 levels corresponding to the increased total-tau levels. These findings indicate that increased levels of LAMP-1, LAMP-2, LC3, Rab3 and Rab7 in the CSF might be specific for AD, and increased EEA1 levels may be a sign of general neurodegeneration. These six lysosomal network proteins are potential AD biomarkers and may be used to investigate lysosomal involvement in AD pathogenesis.
  •  
2.
  • Boman, Andrea, et al. (författare)
  • The role of LAMP-2 in AβPP processing and Aβ degradation; implications for Alzheimer’s Disease
  • 2015
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Dysfunction in the lysosomal network, i.e., the endosomal, lysosomal and autophagy systems, are implicated in the pathways in Alzheimer’s disease brain pathology. This dysfunction is mirrored in the cerebrospinal fluid where a specific subset of lysosomal network proteins are found at elevated levels, lysosomal associated membrane protein-2 (LAMP-2) being one of the identified lysosomal proteins. Here we report that hippocampus and frontal cortex in Alzheimer’s disease cases have increased mRNA and protein expression of LAMP-2, and thus these brain areas are likely involved in the increased LAMP-2 levels seen in cerebrospinal fluid from Alzheimer’s disease patients. The increased LAMP-2 levels correlated with increased levels of β-amyloid1-42 (Aβ1-42). Oligomeric Aβ1-42 caused an upregulation of intracellular LAMP-2 in neuroblastoma cells, but did not trigger the release of LAMP-2 to the extracellular milieu, indicating that other cell types or mechanisms are responsible for the LAMP-2 release seen in cerebrospinal fluid. Overexpression of LAMP-2 in neuroblastoma cells caused a trend of reduction of secreted Aβ1-42 and changed the processing pattern of the Aβ precursor protein. These results indicate that Aβ1-42 mediated increase of LAMP-2 expression can act as a regulator of Aβ generation and secretion. LAMP-2 overexpression did not change the cellular uptake of extracellularly added Aβ1-42, but caused a delayed clearance of Aβ1-42. Whether the prolonged intracellular localization of Aβ1-42 in LAMP-2 overexpressing cells can change the transmission or degradation of Aβ remains to be investigated.
  •  
3.
  • Helmfors, Linda, et al. (författare)
  • A protective role of lysozyme in Alzheimer disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer disease (AD) is a devastating neurodegenerative disorder where extracellular plaques composed of amyloid β (Aβ) peptides and neuroinflammation are some of the main hallmarks of the disease. Activated microglial cells, which are the resident macrophages in the central nervous system, are suggested to trigger the inflammation response in AD. To discover neuroinflammation biomarkers would be important to reveal the pathological mechanisms of AD and develop therapies that target inflammation mediators. Lysozyme is part of the innate immune system and is secreted from macrophages during various inflammation conditions. However, the involvement of lysozyme in AD pathology has not been explored previously. We have discovered that lysozyme is up-regulated in cerebrospinal fluid from AD patients. Cells exposed to Aβ increased the expression of lysozyme indicating that Aβ might be responsible for the upregulation of lysozyme detected in cerebrospinal fluid. In vitro studies revealed that lysozyme binds to monomeric Aβ1-42 and alters the aggregation pathway counteracting formation of toxic Aβ species. In a newly developed Drosophila model, co-expression of lysozyme with Aβ in brain neurons reduced the formation of insoluble Aβ species, prolonged the survival and improved the activity of the double transgenic flies compared to flies only expressing Aβ. Our findings identify lysozyme as a modulator of Aβ aggregation and toxicity and our discoveries has the potential to be used for development of new treatment strategies and to use lysozyme as a biomarker for AD.
  •  
4.
  • Helmfors, Linda, et al. (författare)
  • Protective properties of lysozyme on β-amyloid pathology : implications for Alzheimer disease
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 83, s. 122-133
  • Tidskriftsartikel (refereegranskat)abstract
    • The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
  •  
5.
  • Sandin, Linnea, et al. (författare)
  • Beneficial effects of increased lysozyme levels in Alzheimer’s disease modelled in Drosophila melanogaster
  • 2016
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 283:19, s. 3508-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic polymorphisms of immune genes that associate with higher risk to develop Alzheimer’s disease (AD) have led to an increased research interest on the involvement of the immune system in AD pathogenesis. A link between amyloid pathology and immune gene expression was suggested in a genome-wide gene expression study of transgenic amyloid mouse models. In this study, the gene expression of lysozyme, a major player in the innate immune system, was found to be increased in a comparable pattern as the amyloid pathology developed in transgenic mouse models of AD. A similar pattern was seen at protein levels of lysozyme in human AD brain and CSF, but this lysozyme pattern was not seen in a tau transgenic mouse model. Lysozyme was demonstrated to be beneficial for different Drosophila melanogaster models of AD. In flies that expressed Aβ1-42 or AβPP together with BACE1 in the eyes, the rough eye phenotype indicative of toxicity was completely rescued by coexpression of lysozyme. In Drosophila flies bearing the Aβ1-42 variant with the Arctic gene mutation, lysozyme increased the fly survival and decreased locomotor dysfunction dose dependently. An interaction between lysozyme and Aβ1-42 in the Drosophila eye was discovered. We propose that the increased levels of lysozyme, seen in mouse models of AD and in human AD cases, were triggered by Aβ1-42 and caused a beneficial effect by binding of lysozyme to toxic species of Aβ1-42, which prevented these from exerting their toxic effects. These results emphasize the possibility of lysozyme as biomarker and therapeutic target for AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy