SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kåredal Monica) ;pers:(Rissler Jenny)"

Sökning: WFRF:(Kåredal Monica) > Rissler Jenny

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Camilla, et al. (författare)
  • Aerosolized particulate matter from fragmentation of carbon nanotube-enhanced concrete
  • 2023
  • Ingår i: Abstracts from the 2022 Airmon-10 conference and the 2023 Inhaled Particles and NanOEH conference. - 2398-7316 .- 2398-7308. ; 67:Supplement_1, s. i94-i95
  • Konferensbidrag (refereegranskat)abstract
    • Construction and demolition workers are exposed to high levels of particulate matter (PM) from building materials throughout their working life. Although nano-enabled building materials (NEBMs) may improve the performance and functionality of buildings, concerns are being raised regarding health risks from occupational exposure to PM from NEBMs. In this work, an experimental set-up for integrated resuspension and characterization of PM from NEBMs was developed and tested using three types of concrete (low density, normal, high strength), each enhanced with Carbon Nanotubes (CNTs) at different concentrations (0, low, high). The performance of portable devices used in occupational exposure assessments (DustTrak and NanoTracer) was compared with stationary instruments and gravimetric filter techniques. 40-70% of the mass and 90-98% of the number of particles were within the respirable fraction, with primary modes at 150 nm and 2-3 µm. Addition of CNTs significantly decreased mean particle number concentrations (PNCs) across the entire characterized size range (7 nm - 20 µm) for low density concrete, whereas the opposite was the case for normal strength and high strength concrete. It was hypothesised that the concrete matrix primarily governs the PM formation, which is in turn modulated by CNT-matrix interactions either suppressing or supporting fragmentation during crushing. SEM imaging could display partially submerged CNTs protruding from concrete fragments. Fundamental interactions at the interface of the nanomaterial and the surrounding matrix needs to be investigated to determine how the PM generated from NEBMs differ from their non-nano counterparts and how to prevent future exposure during demolition.
  •  
2.
  • Abrahamsson, Camilla, et al. (författare)
  • Characterization of airborne dust emissions from three types of crushed multi-walled carbon nanotube-enhanced concretes
  • 2024
  • Ingår i: NanoImpact. - : Elsevier B.V.. - 2452-0748. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersing Multi-Walled Carbon Nanotubes (MWCNTs) into concrete at low (<1 wt% in cement) concentrations may improve concrete performance and properties and provide enhanced functionalities. When MWCNT-enhanced concrete is fragmented during remodelling or demolition, the stiff, fibrous and carcinogenic MWCNTs will, however, also be part of the respirable particulate matter released in the process. Consequently, systematic aerosolizing of crushed MWCNT-enhanced concretes in a controlled environment and measuring the properties of this aerosol can give valuable insights into the characteristics of the emissions such as concentrations, size range and morphology. These properties impact to which extent the emissions can be inhaled as well as where they are expected to deposit in the lung, which is critical to assess whether these materials might constitute a future health risk for construction and demolition workers. In this work, the impact from MWCNTs on aerosol characteristics was assessed for samples of three concrete types with various amounts of MWCNT, using a novel methodology based on the continuous drop method. MWCNT-enhanced concretes were crushed, aerosolized and the emitted particles were characterized with online and offline techniques. For light-weight porous concrete, the addition of MWCNT significantly reduced the respirable mass fraction (RESP) and particle number concentrations (PNC) across all size ranges (7 nm – 20 μm), indicating that MWCNTs dampened the fragmentation process by possibly reinforcing the microstructure of brittle concrete. For normal concrete, the opposite could be seen, where MWCNTs resulted in drastic increases in RESP and PNC, suggesting that the MWCNTs may be acting as defects in the concrete matrix, thus enhancing the fragmentation process. For the high strength concrete, the fragmentation decreased at the lowest MWCNT concentration, but increased again for the highest MWCNT concentration. All tested concrete types emitted <100 nm particles, regardless of CNT content. SEM imaging displayed CNTs protruding from concrete fragments, but no free fibres were detected. 
  •  
3.
  • Al-Rekabi, Zeinab, et al. (författare)
  • Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models
  • 2023
  • Ingår i: Royal Society Open Science. - : Royal Society Publishing. - 2054-5703. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures. 
  •  
4.
  • Ali, Neserin, et al. (författare)
  • Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins.
  • 2016
  • Ingår i: Nanotoxicology. - : Taylor & Francis. - 1743-5390 .- 1743-5404. ; 10:2, s. 226-234
  • Tidskriftsartikel (refereegranskat)abstract
    • Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona.
  •  
5.
  • Ali, Neserin, et al. (författare)
  • Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
  • 2018
  • Ingår i: Clinical Proteomics. - : Springer Science and Business Media LLC. - 1542-6416 .- 1559-0275. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. Methods: In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. Results: The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. Conclusion: Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Hedmer, Maria, et al. (författare)
  • 148. Carbon Nanotubes
  • 2013
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon nanotubes (CNTs) can be seen as graphene sheets rolled to form cylinders. CNTs may be categorised as single- (SWCNT) or multi-walled (MWCNT). Due to the small size, the number of particles as well as the surface area per mass unit is extremely high. CNTs are highly diverse, differing with respect to e.g., diameter, length, chiral angles, chemical functionalisation, purity, stiffness and bulk density. Today, CNTs are utilised primarily for the reinforcement of composite polymers, but there is considerable potential for other applications. The rapidly growing production and use of CNTs increases the risk for occupational exposure. Since CNTs in bulk form are of very low density and much dust is produced during their handling, exposure by inhalation appears to represent the greatest potential risk in the work place. However, most work place measurements involved sampling periods that are too short, varying sampling techniques and non-specific analytical methods. CNTs may be absorbed via inhalation and ingestion. Systemic uptake via the skin has not been demonstrated. Human toxicity data on CNTs are lacking and interpretation of animal studies is often problematic since the physical properties and chemical composition are diverse, impurities may be present and data are sometimes omitted. Because of the physical similarities between asbestos and CNTs, it can be suspected that the latter may also cause lung fibrosis, mesothelioma and lung cancer following inhalation. Intraperitoneal and intrascrotal administration of CNTs causes mesothelioma in animals, but no inhalation carcinogenicity studies have been conducted. Thus, it is too early conclude whether CNTs cause mesothelioma and lung cancer in humans. Both SWCNTs and MWCNTs cause inflammation and fibrosis in the lungs of relevant animal types and for MWCNTs these effects are also seen in the pleura. For instance, minimal histiocytosis and mild granulomatous inflammation in the lungs and lung-draining lymph nodes have been observed in rats exposed for 13 weeks to 0.1 mg/m3 MWCNTs (lowest observed adverse effect level, LOAEL), with more pronounced inflammation in both mice and rats at higher doses. Thus, inflammatory responses in the lungs may be considered as the critical effect. However, the LOAEL of CNTs should be interpreted cautiously, since their toxicity is likely to vary widely, depending on the structure and physicochemical properties, as well as the contribution from non-carbon components. It is also uncertain which dose metric (e.g., mass, number or surface area per air volume unit) is most appropriate. Some studies indicate that longer straight CNTs evoke more pronounced biological effects than shorter or tangled fibres.
  •  
10.
  • Janhäll, Sara, 1965-, et al. (författare)
  • Release of carbon nanotubes during combustion of polymer nanocomposites in a pilot-scale facility for waste incineration
  • 2021
  • Ingår i: NanoImpact. - : Elsevier BV. - 2452-0748. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocomposites, formed by incorporating nanoparticles into a matrix of standard materials, are increasing on the market. Little focus has been directed towards safe disposal and recycling of these new materials even though the disposal has been identified as a phase of the products' life cycle with a high risk of uncontrolled emissions of nanomaterials. In this study, we investigate if the carbon nanotubes (CNTs), when used as a filler in two types of polymers, are fully destructed in a pilot-scale combustion unit designed to mimic the combustion under waste incineration. The two polymer nanocomposites studied, polycarbonate (PC) with CNT and high-density polyethylene (HDPE) with CNT, were incinerated at two temperatures where the lower temperature just about fulfilled the European waste incineration directive while the upper was chosen to be on the safe side of fulfilling the directive. Particles in the flue gas were sampled and analysed with online and offline instrumentation along with samples of the bottom ash. CNTs could be identified in the flue gas in all experiments, although present to a greater extent when the CNTs were introduced in PC as compared to in HDPE. In the case of using PC as polymer matrix, CNTs were identified in 3–10% of the analysed SEM images while for HDPE in only ~0.5% of the images. In the case of PC, the presence of CNTs decreased with increasing bed temperature (from 10% to 3% of the images). The CNTs identified were always in bundles, often coated with remnants of the polymer, forming particles of ~1–4 μm in diameter. No CNTs were identified in the bottom ash, likely explained by the difference in time when the bottom ash and fly ash are exposed to high temperatures (~hours compared to seconds) in the pilot facility. The results suggest that the residence time of the fly ash in the combustion zone is not long enough to allow full oxidation of the CNTs. Thus, the current regulation on waste incineration (requiring a residence time of the flue gas >850 °C during at least 2 s) may not be enough to obtain complete destruction of CNTs in polymer composites. Since several types of CNTs are known to be toxic, we stress the need for further investigation of the fate and toxicity of CNTs in waste treatment processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
konferensbidrag (10)
tidskriftsartikel (9)
rapport (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Kåredal, Monica (20)
Pagels, Joakim (11)
Gudmundsson, Anders (10)
Broberg Palmgren, Ka ... (9)
Bohgard, Mats (7)
visa fler...
Wierzbicka, Aneta (7)
Jönsson, Bo A (6)
Albin, Maria (6)
Axmon, Anna (6)
Stockfelt, Leo (6)
Isaxon, Christina (5)
Hedmer, Maria (5)
Barregård, Lars (5)
Xu, YiYi (5)
Cedervall, Tommy (4)
Ameer, Shegufta (4)
Nielsen, Jörn (3)
Ali, Neserin (3)
Abrahamsson, Camilla (2)
Broberg, Karin (2)
Lovén, Karin (2)
Petersson Sjögren, M ... (1)
Löndahl, Jakob (1)
Wollmer, Per (1)
Ahlberg, Erik (1)
Suchorzewski, Jan (1)
Prieto Rábade, Migue ... (1)
Arun Chaudhari, Ojas (1)
Lindh, Christian (1)
Al-Rekabi, Zeinab (1)
Dondi, Camilla (1)
Faruqui, Nilofar (1)
Siddiqui, Nazia S. (1)
Elowsson, Linda (1)
Mudway, Ian (1)
Larsson-Callerfelt, ... (1)
Shaw, Michael (1)
Gustavsson, Per (1)
Alhamdow, Ayman (1)
Lindh, Christian H. (1)
Mattsson, Karin (1)
Karlsson, Helen Marg (1)
Svensson, Christian ... (1)
Ljunggren, Stefan, 1 ... (1)
Karlsson, Helen (1)
Bölükbas, Deniz (1)
Thuresson, Sara (1)
Jönsson, Bo A.G. (1)
Sallsten, Gerd (1)
visa färre...
Lärosäte
Lunds universitet (20)
RISE (8)
Linköpings universitet (2)
Karolinska Institutet (2)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Teknik (7)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy