SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kåredal Monica) ;pers:(Svensson Christian)"

Sökning: WFRF:(Kåredal Monica) > Svensson Christian

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Neserin, et al. (författare)
  • Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins.
  • 2016
  • Ingår i: Nanotoxicology. - : Taylor & Francis. - 1743-5390 .- 1743-5404. ; 10:2, s. 226-234
  • Tidskriftsartikel (refereegranskat)abstract
    • Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Svensson, Christian, et al. (författare)
  • Validation of an air–liquid interface toxicological set-up using Cu, Pd, and Ag well-characterized nanostructured aggregates and spheres
  • 2016
  • Ingår i: Journal of Nanoparticle Research. - : Springer Science and Business Media LLC. - 1388-0764 .- 1572-896X. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Systems for studying the toxicity of metal aggregates on the airways are normally not suited for evaluating the effects of individual particle characteristics. This study validates a set-up for toxicological studies of metal aggregates using an air–liquid interface approach. The set-up used a spark discharge generator capable of generating aerosol metal aggregate particles and sintered near spheres. The set-up also contained an exposure chamber, The Nano Aerosol Chamber for In Vitro Toxicity (NACIVT). The system facilitates online characterization capabilities of mass mobility, mass concentration, and number size distribution to determine the exposure. By dilution, the desired exposure level was controlled. Primary and cancerous airway cells were exposed to copper (Cu), palladium (Pd), and silver (Ag) aggregates, 50–150 nm in median diameter. The aggregates were composed of primary particles 2, respectively, were achieved. Viability was measured by WST-1 assay, cytokines (Il-6, Il-8, TNF-a, MCP) by Luminex technology. Statistically significant effects and dose response on cytokine expression were observed for SAEC cells after exposure to Cu, Pd, or Ag particles. Also, a positive dose response was observed for SAEC viability after Cu exposure. For A549 cells, statistically significant effects on viability were observed after exposure to Cu and Pd particles. The set-up produced a stable flow of aerosol particles with an exposure and dose expressed in terms of number, mass, and surface area. Exposure-related effects on the airway cellular models could be asserted. Graphical Abstract: [Figure not available: see fulltext.]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy