SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kacprowski T.) "

Sökning: WFRF:(Kacprowski T.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Clark, DW, et al. (författare)
  • Associations of autozygosity with a broad range of human phenotypes
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4957-
  • Tidskriftsartikel (refereegranskat)abstract
    • In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
  •  
3.
  • Kular, L, et al. (författare)
  • DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis
  • 2018
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2397-
  • Tidskriftsartikel (refereegranskat)abstract
    • The human leukocyte antigen (HLA) haplotype DRB1*15:01 is the major risk factor for multiple sclerosis (MS). Here, we find that DRB1*15:01 is hypomethylated and predominantly expressed in monocytes among carriers of DRB1*15:01. A differentially methylated region (DMR) encompassing HLA-DRB1 exon 2 is particularly affected and displays methylation-sensitive regulatory properties in vitro. Causal inference and Mendelian randomization provide evidence that HLA variants mediate risk for MS via changes in the HLA-DRB1 DMR that modify HLA-DRB1 expression. Meta-analysis of 14,259 cases and 171,347 controls confirms that these variants confer risk from DRB1*15:01 and also identifies a protective variant (rs9267649, p < 3.32 × 10−8, odds ratio = 0.86) after conditioning for all MS-associated variants in the region. rs9267649 is associated with increased DNA methylation at the HLA-DRB1 DMR and reduced expression of HLA-DRB1, suggesting a modulation of the DRB1*15:01 effect. Our integrative approach provides insights into the molecular mechanisms of MS susceptibility and suggests putative therapeutic strategies targeting a methylation-mediated regulation of the major risk gene.
  •  
4.
  • Bonfiglio, F., et al. (författare)
  • A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome
  • 2018
  • Ingår i: Neurogastroenterology and Motility. - : WILEY. - 1350-1925 .- 1365-2982. ; 30:9
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIrritable bowel syndrome (IBS) shows genetic predisposition, however, large-scale, powered gene mapping studies are lacking. We sought to exploit existing genetic (genotype) and epidemiological (questionnaire) data from a series of population-based cohorts for IBS genome-wide association studies (GWAS) and their meta-analysis. MethodsBased on questionnaire data compatible with Rome III Criteria, we identified a total of 1335 IBS cases and 9768 asymptomatic individuals from 5 independent European genotyped cohorts. Individual GWAS were carried out with sex-adjusted logistic regression under an additive model, followed by meta-analysis using the inverse variance method. Functional annotation of significant results was obtained via a computational pipeline exploiting ontology and interaction networks, and tissue-specific and gene set enrichment analyses. Key ResultsSuggestive GWAS signals (P5.0x10(-6)) were detected for 7 genomic regions, harboring 64 gene candidates to affect IBS risk via functional or expression changes. Functional annotation of this gene set convincingly (best FDR-corrected P=3.1x10(-10)) highlighted regulation of ion channel activity as the most plausible pathway affecting IBS risk. Conclusion & InferencesOur results confirm the feasibility of population-based studies for gene-discovery efforts in IBS, identify risk genes and loci to be prioritized in independent follow-ups, and pinpoint ion channels as important players and potential therapeutic targets warranting further investigation.
  •  
5.
  • Chami, Nathalie, et al. (författare)
  • Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:1, s. 8-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 x 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 x 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 x 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 x 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 x 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.
  •  
6.
  • Eicher, John D., et al. (författare)
  • Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:1, s. 40-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common(ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV(PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.
  •  
7.
  •  
8.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
9.
  • Yaghootkar, Hanieh, et al. (författare)
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:12, s. 2806-2818
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy