SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kahles Andre) "

Sökning: WFRF:(Kahles Andre)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Calabrese, Claudia, et al. (författare)
  • Genomic basis for RNA alterations in cancer
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7793, s. 129-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.
  •  
2.
  • Chng, Kern Rei, et al. (författare)
  • Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26, s. 941-951
  • Tidskriftsartikel (refereegranskat)abstract
    • Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections. Spatiotemporal characterization of microbial diversity and antibiotic resistance in a tertiary-care hospital reveals broad distribution and persistence of antibiotic-resistant organisms that could cause opportunistic infections in a healthcare setting.
  •  
3.
  • Danko, David, et al. (författare)
  • A global metagenomic map of urban microbiomes and antimicrobial resistance
  • 2021
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 184:13, s. 3376-3393
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.
  •  
4.
  • Kahles, André, et al. (författare)
  • Excap : maximization of haplotypic diversity of linked markers
  • 2013
  • Ingår i: PLOS ONE. - : PLOS. - 1932-6203. ; 8:11, s. e79012-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic markers, defined as variable regions of DNA, can be utilized for distinguishing individuals or populations. As long as markers are independent, it is easy to combine the information they provide. For nonrecombinant sequences like mtDNA, choosing the right set of markers for forensic applications can be difficult and requires careful consideration. In particular, one wants to maximize the utility of the markers. Until now, this has mainly been done by hand. We propose an algorithm that finds the most informative subset of a set of markers. The algorithm uses a depth first search combined with a branch-and-bound approach. Since the worst case complexity is exponential, we also propose some data-reduction techniques and a heuristic. We implemented the algorithm and applied it to two forensic caseworks using mitochondrial DNA, which resulted in marker sets with significantly improved haplotypic diversity compared to previous suggestions. Additionally, we evaluated the quality of the estimation with an artificial dataset of mtDNA. The heuristic is shown to provide extensive speedup at little cost in accuracy.
  •  
5.
  • Ryon, Krista A., et al. (författare)
  • A history of the MetaSUB consortium : Tracking urban microbes around the globe
  • 2022
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 25:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters.
  •  
6.
  • Segal, Eran, et al. (författare)
  • Building an international consortium for tracking coronavirus health status
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26:8, s. 1161-1165
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We call upon the research community to standardize efforts to use daily self-reported data about COVID-19 symptoms in the response to the pandemic and to form a collaborative consortium to maximize global gain while protecting participant privacy.
  •  
7.
  • Weinstein, John N., et al. (författare)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:10, s. 1113-1120
  • Forskningsöversikt (refereegranskat)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Kahles, André (7)
Rätsch, Gunnar (4)
Deng, Youping (3)
Desnues, Christelle (3)
Dias-Neto, Emmanuel (3)
Elhaik, Eran (3)
visa fler...
Iraola, Gregorio (3)
Łabaj, Paweł P. (3)
Mason, Christopher E ... (3)
Suzuki, Haruo (3)
Bhattacharyya, Malay (3)
Udekwu, Klas (3)
Hajirasouliha, Iman (3)
Noushmehr, Houtan (3)
Oliveira, Manuela (3)
Bezdan, Daniela (3)
Bhattacharya, Chandr ... (2)
Castro-Nallar, Eduar ... (2)
Jang, Soojin (2)
Nagarajan, Niranjan (2)
Shi, Tieliu (2)
Meyerson, Matthew (2)
Kelly, Frank J. (2)
Danko, David (2)
Green, David C. (2)
Kyrpides, Nikos C. (2)
Lehmann, Kjong-Van (2)
Hoadley, Katherine A (2)
Pedamallu, Chandra S ... (2)
Creighton, Chad J (2)
Brooks, Angela N (2)
Ossowski, Stephan (2)
Graf, Alexandra B. (2)
Moraes, Milton Ozori ... (2)
Shi, Leming (2)
Richard, Hugues (2)
Semmler, Torsten (2)
Dybwad, Marius (2)
Chatziefthimiou, Asp ... (2)
Schriml, Lynn M. (2)
Hernandez, Mark (2)
Chng, Kern Rei (2)
Ahsanuddin, Sofia (2)
Butler, Daniel J. (2)
De Filippis, Frances ... (2)
Hecht, Jochen (2)
Karasikov, Mikhail (2)
Leung, Marcus H. Y. (2)
Meleshko, Dmitry (2)
Mustafa, Harun (2)
visa färre...
Lärosäte
Stockholms universitet (4)
Lunds universitet (3)
Karolinska Institutet (3)
Uppsala universitet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
visa fler...
Örebro universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy