SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalpouzos G) "

Sökning: WFRF:(Kalpouzos G)

  • Resultat 1-10 av 49
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hooshmand, Babak, et al. (författare)
  • Association of Methionine to Homocysteine Status With Brain Magnetic Resonance Imaging Measures and Risk of Dementia
  • 2019
  • Ingår i: JAMA psychiatry. - : American Medical Association. - 2168-6238 .- 2168-622X. ; 76:11, s. 1198-1205
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Impairment of methylation status (ie, methionine to homocysteine ratio) may be a modifiable risk factor for structural brain changes and incident dementia.OBJECTIVE To investigate the association of serum markers of methylation status and sulfur amino acids with risk of incident dementia, Alzheimer disease (AD), and the rate of total brain tissue volume loss during 6 years.DESIGN, SETTING, AND PARTICIPANTS This population-based longitudinal study was performed from March 21, 2001, to October 10, 2010, in a sample of 2570 individuals aged 60 to 102 years from the Swedish Study on Aging and Care in Kungsholmen who were dementia free at baseline and underwent comprehensive examinations and structural brain magnetic resonance imaging (MRI) on 2 to 3 occasions during 6 years. Data analysis was performed from March 1, 2018, to October 1, 2018.MAIN OUTCOMES AND MEASURES Incident dementia, AD, and the rate of total brain volume loss.RESULTS This study included 2570 individuals (mean [SD] age, 73.1 [10.4] years; 1331 [56.5%] female). The methionine to homocysteine ratio was higher in individuals who consumed vitamin supplements (median, 1.9; interquartile range [IQR], 1.5-2.6) compared with those who did not (median, 1.8; IQR, 1.3-2.3; P<.001) and increased per each quartile increase of vitamin B-12 or folate. In the multiadjusted model, an elevated baseline serum total homocysteine level was associated with an increased risk of dementia and AD during 6 years: for the highest homocysteine quartile compared with the lowest, the hazard ratios (HRs) were 1.60 (95% CI, 1.01-2.55) for dementia and 2.33 (95% CI, 1.26-4.30) for AD. In contrast, elevated concentrations of methionine were associated with a decreased risk of dementia (HR, 0.54; 95% CI, 0.36-0.81) for the highest quartile compared with the lowest. Higher values of the methionine to homocysteine ratio were significantly associated with lower risk of dementia and AD: for the fourth methionine-homocysteine quartile compared with the first quartile, the HR was 0.44 (95% CI, 0.27-0.71) for incident dementia and 0.43 (95% CI, 0.23-0.80) for AD. In the multiadjusted linear mixed models, a higher methionine to homocysteine ratio was associated with a decreased rate of total brain tissue volume loss during the study period (beta [SE] per 1-SD increase, 0.038 [0.014]; P=.007).CONCLUSIONS AND RELEVANCE The methionine to homocysteine status was associated with dementia development and structural brain changes during the 6-year study period, suggesting that a higher methionine to homocysteine ratio may be important in reducing the rate of brain atrophy and decreasing the risk of dementia in older adults.
  •  
2.
  • Kalpouzos, Grégoria, et al. (författare)
  • Higher Striatal Iron Concentration is Linked to Frontostriatal Underactivation and Poorer Memory in Normal Aging
  • 2017
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 27:6, s. 3427-3436
  • Tidskriftsartikel (refereegranskat)abstract
    • In the brain, intracellular iron is essential for cellular metabolism. However, an overload of free iron is toxic, inducing oxidative stress and cell death. Although an increase of striatal iron has been related to atrophy and impaired cognitive performance, the link between elevated iron and altered brain activity in aging remains unexplored. In a sample of 37 younger and older adults, we examined whether higher striatal iron concentration could underlie age-related differences in frontostriatal activity induced by mental imagery of motor and non-motor scenes, and poorer recall of the scenes. Higher striatal iron concentration was linked to underrecruitment of frontostriatal regions regardless of age and striatal volume, the iron-activity association in right putamen being primarily driven by the older adults. In older age, higher striatal iron was related to poorer memory. Altered astrocytic functions could account for the link between brain iron and brain activity, as astrocytes are involved in iron buffering, neurovascular coupling, and synaptic activity. Our preliminary findings, which need to be replicated in a larger sample, suggest a potential frontostriatal target for intervention to counteract negative effects of iron accumulation on brain function and cognition.
  •  
3.
  • Kalpouzos, Gregoria, et al. (författare)
  • Local brain atrophy accounts for functional activity differences in normal aging
  • 2012
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 33:3, s. 623.e1-
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional brain imaging studies of normal aging typically show age-related under-and overactivations during episodic memory tasks. Older individuals also undergo nonuniform gray matter volume (GMv) loss. Thus, age differences in functional brain activity could at least in part result from local atrophy. We conducted a series of voxel-based blood oxygen level-dependent (BOLD)-GMv analyses to highlight whether age-related under-and overrecruitment was accounted for by GMv changes. Occipital GMv loss accounted for underrecruitment at encoding. Efficiency reduction of sensory-perceptual mechanisms underpinned by these areas may partly be due to local atrophy. At retrieval, local GMv loss accounted for age-related overactivation of left dorsolateral prefrontal cortex, but not of left dorsomedial prefrontal cortex. Local atrophy also accounted for age-related overactivation in left lateral parietal cortex. Activity in these frontoparietal regions correlated with performance in the older group. Atrophy in the overrecruited regions was modest in comparison with other regions as shown by a between-group voxel-based morphometry comparison. Collectively, these findings link age-related structural differences to age-related functional under-as well as overrecruitment.
  •  
4.
  • Kalpouzos, Grégoria, et al. (författare)
  • Telomerase Gene (hTERT) and Survival : Results From Two Swedish Cohorts of Older Adults
  • 2016
  • Ingår i: The journals of gerontology. Series A, Biological sciences and medical sciences. - 1079-5006 .- 1758-535X. ; 71:2, s. 188-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomere length has been associated with longevity. As telomere length is partly determined by the human telomerase reverse transcriptase (hTERT), we investigated the association between an hTERT polymorphism located in its promoter region ((-) (1327)T/C) and longevity in two cohorts of older adults. Participants from the Kungsholmen project (KP; n = 1,205) and the Swedish National study of Aging and Care in Kungsholmen (SNAC-K; n = 2,764) were followed for an average period of 7.5 years. The main outcomes were hazard ratios (HR) of mortality and median age at death. In both cohorts, mortality was lower in female T/T carriers, aged 75+ years in KP (HR = 0.8, 95% CI: 0.5-0.9) and 78+ years in SNAC-K (HR = 0.6, 95% CI: 0.4-0.8) compared with female C/C carriers. T/T carriers died 1.8-3 years later than the C/C carriers. This effect was not present in men, neither in SNAC-K women aged 60-72 years. The association was not modified by presence of cancer, cardiovascular diseases, number of chronic diseases, or markers of inflammation, and did not interact with APOE genotype or estrogen replacement therapy. The gender-specific increased survival in T/T carriers can be due to a synergistic effect between genetic background and the life-long exposure to endogenous estrogen.
  •  
5.
  • Laukka, Erika J., et al. (författare)
  • Microstructural White Matter Properties Mediate the Association between APOE and Perceptual Speed in Very Old Persons without Dementia
  • 2015
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Reduced white matter integrity, as indicated by lower fractional anisotropy (FA) and higher mean diffusivity (MD), has been related to poorer perceptual speed (PS) performance. As the epsilon 4 allele has been associated with lower white matter integrity in old age, this represents a potential mechanism through which APOE may affect PS. Objective To examine whether the association between APOE and PS is mediated by white matter microstructure in very old persons without dementia. Method Participants were selected from the population-based SNAC-K study. After excluding persons with dementia, preclinical dementia, and other neurological disorders, 652 persons (age range 78-90) were included in the study, of which 89 had data on diffusion tensor imaging (DTI). We used structural equation modeling to form seven latent white matter factors (FA and MD) and one latent PS factor. Separate analyses were performed for FA and MD and mediational analyses were carried out for tracts where significant associations were observed to both APOE and PS. Results APOE was associated with white matter microstructure in 2 out of 14 tracts; e4 carriers had significantly lower FA in forceps major and higher MD in the cortico-spinal tract. Allowing the white matter microstructure indicators in these tracts to mediate the association between APOE and PS resulted in a markedly attenuated association between these variables. Bootstrapping statistics in the subsample with DTI data (n = 89) indicated that FA in forceps major significantly mediated the association between APOE and PS (indirect effect: -0.070, 95% bias corrected CIs -0.197 to -0.004). Conclusion Lower white matter integrity may represent one of several mechanisms through which APOE affects PS performance in elderly persons free of dementia and preclinical dementia.
  •  
6.
  • Lecouvey, Gregory, et al. (författare)
  • Binding in working memory and frontal lobe in normal aging : is there any similarity with autism?
  • 2015
  • Ingår i: Frontiers in Human Neuroscience. - 1662-5161 .- 1662-5161. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Some studies highlight similarities between Autism Spectrum Disorder (ASP and healthy aging. Indeed, the decline in older individuals' ability to create a unified representation of the individual features of an event is thought to arise from a disruption of binding within the episodic buffer of working memory (WM) as the same way as observed in ASD. In both cases, this deficit may result from an abnormal engagement of a frontohippocampal network. The objective of the present study is to identify both cognitive processes and neural substrates associated with the deficit of binding in WM in healthy aging. We studied the capacity of binding and the cognitive processes that might subtend its decline in 72 healthy participants aged 18-84 years. We examined the behavioral data in relation to the changes in brain metabolism associated with the age-related decline in a subgroup of 34 healthy participants aged 20-77 years using the resting state [F-18] fluorodeoxyglucose positron emission tomography (F-18-FDG PET). Forward stepwise regression analyses showed that the age-related decline in binding was partially explained by a decline in inhibition and processing speed. PET correlation analyses indicated that metabolism of the frontal regions, anterior and middle cingulate cortices is implicated in this phenomenon. These data suggest that executive functions and processing speed may play a crucial role in the capacity to integrate unified representations in memory in aging. Possible implications are discussed in ASD.
  •  
7.
  • Li, Xin, et al. (författare)
  • Influence of the DRD2/ANKK1 Taq1A polymorphism on caudate volume in older adults without dementia
  • 2018
  • Ingår i: Brain Structure and Function. - : Springer. - 1863-2653 .- 1863-2661. ; 223:6, s. 2653-2662
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopaminergic neuromodulation is critically important for brain and cognitive integrity. The DRD2/ANKK1 Taq1A polymorphism is associated with striatal dopamine (DA) D2 receptor availability. Some previous studies have found that the A allele of the Taq1A polymorphism influences brain structure, but the results are inconsistent, likely due to population heterogeneity and small sample sizes. We investigated the genetic effect on caudate volume in a large sample of older adults without dementia. Results show that A-allele carriers have smaller caudate volume compared to non-carriers in relatively older adults (n = 167; Mage = 77.8 years), whereas the genotype did not influence caudate volume in a younger age group (n = 220; Mage = 62.8 years). Cognitive performance was not significantly affected by the DRD2 gene. Our findings extend previous observations by showing magnified genetic effects on brain volume in old age, and provide evidence for a link between a DA-related genetic polymorphism and grey matter volume in a brain region within the nigrostriatal dopaminergic pathway.
  •  
8.
  • Müller, Theresa, et al. (författare)
  • Cognitive, Genetic, Brain Volume, and Diffusion Tensor Imaging Markers as Early Indicators of Dementia
  • 2020
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 77:4, s. 1443-1453
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although associated with dementia and cognitive impairment, microstructural white matter integrity is a rarely used marker of preclinical dementia.Objective: We aimed to evaluate the individual and combined effects of multiple markers, with special focus on microstructural white matter integrity, in detecting individuals with increased dementia risk.Methods: A dementia-free subsample (n = 212, mean age = 71.33 years) included in the population-based Swedish National Study on Aging and Care (SNAC-K) underwent magnetic resonance imaging (T1-weighted, fluid-attenuated inversion recovery, diffusion tensor imaging), neuropsychological testing (perceptual speed, episodic memory, semantic memory, letter and category fluency), and genotyping (APOE). Incident dementia was assessed during six years of follow-up.Results: A global model (global cognition, APOE, total brain tissue volume: AUC = 0.920) rendered the highest predictive value for future dementia. Of the models based on specific markers, white matter integrity of the forceps major tract was included in the most predictive model, in combination with perceptual speed and hippocampal volume (AUC = 0.911).Conclusion: Assessment of microstructural white matter integrity may improve the early detection of dementia, although the added benefit in this study was relatively small.
  •  
9.
  • Papenberg, Goran, et al. (författare)
  • Magnified effects of the COMT gene on white-matter microstructure in very old age
  • 2015
  • Ingår i: Brain Structure and Function. - 1863-2653 .- 1863-2661. ; 220:5, s. 2927-2938
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic factors may partly account for between-person differences in brain integrity in old age. Evidence from human and animal studies suggests that the dopaminergic system is implicated in the modulation of white-matter integrity. We investigated whether a genetic variation in the Catechol-O-Methyltransferase (COMT) Val158Met polymorphism, which influences dopamine availability in prefrontal cortex, contributes to interindividual differences in white-matter microstructure, as measured with diffusion-tensor imaging. In a sample of older adults from a population-based study (60-87 years; n = 238), we found that the COMT polymorphism affects white-matter microstructure, indexed by fractional anisotropy and mean diffusivity, of several white-matter tracts in the oldest age group (81-87 years), although there were no reliable associations between COMT and white-matter microstructure in the two younger age groups (60-66 and 72-78 years). These findings extend previous observations of magnified genetic effects on cognition in old age to white-matter integrity.
  •  
10.
  • Papenberg, Göran, et al. (författare)
  • Physical activity and inflammation : effects on gray-matter volume and cognitive decline in aging
  • 2016
  • Ingår i: Human Brain Mapping. - 1065-9471 .- 1097-0193. ; 37:10, s. 3462-3473
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n=414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49
  • [1]2345Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy