SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaminska D) ;pers:(Semaniak J)"

Sökning: WFRF:(Kaminska D) > Semaniak J

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Geppert, W. D., et al. (författare)
  • Dissociative recombination of CD3OD2
  • 2005
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 1, s. 117-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The branching ratios of the different reaction pathways and the overall rate of the dissociative recombination of CD3OD2 + were measured at the CRYRING storage ring located at the Manne Siegbahn Laboratory in Stockholm, Sweden. A preliminary analysis of the data yielded that formation of methanol accounts for only 6±2% of the total reaction rate. Largely, dissociative recombination of CD3OD 2 + involves fragmentation of the C-O bond, the major process being the three-body break-up forming CD3, OD and D (branching ratio 0.59). A non-negligible formation of interstellar methanol by the previously proposed mechanism is therefore very unlikely.
  •  
2.
  • Geppert, W.D., et al. (författare)
  • Dissociative recombination of protonated methanol
  • 2006
  • Ingår i: Faraday discussions. - Cambridge : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 133, s. 177-190
  • Tidskriftsartikel (refereegranskat)abstract
    • The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH3OH2+ and CD3OD2+ have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH3OH2+ and CD3OD2+, respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C - O bond, the major process being the three-body break-up forming CH3, OH and H (CD3, OD and D). The overall cross sections are best fitted by sigma = 1.2 +/- 0.1 x 10(-15) E-1.15 +/- 0.02 cm(2) and sigma = 9.6 +/- 0.9 x 10(-16) E-1.20 +/- 0.02 cm(2) for CH3OH2+ and CD3OD2+, respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 +/- 0.9 x 10(-7) (T/300) (- 0.59 +/- 0.02) cm(3) s(-1) (CH3OH2+) and k( T) = 9.1 +/- 0.9 x 10(-7) (T/ 300) (- 0.63 +/- 0.02) cm(3) s(-1)(CD3OD2+) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH3+ and H2O and subsequent dissociative recombination of the resulting CH3OH2+ ion to yield methanol and hydrogen atoms is therefore very unlikely.
  •  
3.
  • Geppert, W. D., et al. (författare)
  • Formation of biomolecule precursors in space
  • 2007
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 88:1, s. 012068-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohols and nitriles not only play an important role as templates for synthesis of larger molecules in the interstellar medium and planetary atmospheres, but they can also be regarded as precursors for biomolecules. Alcohols can form carbohydrates through reaction with HCO and nitriles can be hydrolysed to amino acids in aqueous solutions, which is the final step of the well-known Strecker synthesis. Therefore the question of the pathways of formation of alcohols and nitriles and the efficiency and the product distribution of their subsequent degradation reactions in the above-mentioned astrophysical environments is of great interest. In both processes dissociative recombination reactions of protonated nitriles and alcohols may play a major role and are included in models of interstellar clouds and planetary atmospheres. However, the reaction rate coefficients and product branching ratios for the majority of these processes are so far still unknown, which adversely affects the quality of predictions of model calculations. In this Contribution, we therefore present branching ratios and rate constants of the dissociative recombination of protonated methanol (CH3OH 2), as well as protonated acetonitrile (CH3CNH +), acrylonitrile (C2H3CNH+) and cyanoacetylene (HC3NH+). The impact of the obtained new data on model calculations of abundances of important interstellar molecules in dark clouds is discussed.
  •  
4.
  • Montaigne, Helen, et al. (författare)
  • Dissociative recombination of the thioformyl (HCS+) and carbonyl sulfide (OCS+) cations
  • 2005
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 631:1, s. 653-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Branching ratios and absolute cross sections have been measured for the dissociative recombination of HCS+ and OCS+ at the CRYRING ion storage ring. In the case of OCS+, the channel leading to CO + S ( 83%) dominates, whereas the other exoergic pathways leading to CS + O (14%) and C + SO (3%) are of lesser importance. In the case of HCS+, fracture of the C - S bond is predominant (81%), with the production of H + CS accounting for the remainder (19%). The cross section of the reaction could be fitted by the expressions sigma = 1.41 x 10(-15)E(eV)(-1.11) and 4.47 x 10(-16)E(eV) (-1.14) cm(2) for HCS+ and OCS+, respectively. The derived energy dependences of the thermal reaction rate coefficients can be fitted by k(T) 9.7 x 10(-7)(T/300)(-0.57) and 3.5 x 10(-7)(T/300)(-0.62) cm(3) s(-1) for HCS+ and OCS+, respectively. We use these data to perform model calculations on the HCS+/CS abundance ratio in dark clouds and find that the models using the UMIST and Ohio State University databases have even more difficulty in accounting for the large observed ratio.
  •  
5.
  • Vigren, Erik, et al. (författare)
  • Dissociative recombination of nitrile ions with implications for Titan's upper atmosphere
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 60:1, s. 102-106
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrile ions are abundant in Titan's upper atmosphere and are expected to be lost mainly via dissociative recombination with free electrons. We review in this paper a series of experimental results on the dissociative recombination reactions of nitrile ions known/expected to be present in Titan's upper atmosphere. The experiments were all performed at the heavy ion storage ring CRYRING in Stockholm, Sweden, and the results presented here include information on rate coefficients at electron temperatures relevant for Titan's upper atmosphere as well as information on the product branching fractions of the reactions. We discuss implications of the results for Titan's atmosphere. As an example the presented results support a statement by Krasnopolsky (2009) that nitriles do not degrade to yield N-2 again in Titan's atmosphere, indicating that condensation and polymerization with precipitation to the surface are their ultimate fate.
  •  
6.
  • Al-Khalili, A, et al. (författare)
  • Dissociative recombination cross section and branching ratios of protonated dimethyl disulfide and N-methylacetamide
  • 2004
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 121:12, s. 5700-5708
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl disulfide (DMDS) and N-methylacetamide are two first choice model systems that represent the disulfide bridge bonding and the peptide bonding in proteins. These molecules are therefore suitable for investigation of the mechanisms involved when proteins fragment under electron capture dissociation (ECD). The dissociative recombination cross sections for both protonated DMDS and protonated N-methylacetamide were determined at electron energies ranging from 0.001 to 0.3 eV. Also, the branching ratios at 0 eV center-of-mass collision energy were determined. The present results give support for the indirect mechanism of ECD, where free hydrogen atoms produced in the initial fragmentation step induce further decomposition. We suggest that both indirect and direct dissociations play a role in ECD.
  •  
7.
  • Geppert, W D, et al. (författare)
  • Dissociative recombination of nitrile ions : DCCCN+ and DCCCND
  • 2004
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 613:2, s. 1302-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Branching ratios and absolute cross sections have been measured for the dissociative recombination of DCCCN+ and DCCCND+ using the CRYRING ion storage ring. In the case of DCCCN+ the dissociation yielding D + C3N and those leading to two fragments containing a pair of heavy atoms dominate, whereas pathways producing a fragment with three heavy atoms play only a minor role. Conversely, for DCCCND+, only those channels preserving the carbon chain or producing two fragments with a pair of heavy atoms each are detected. The cross sections of the reactions are very similar and can be fitted to the expressions sigma = (2.9 +/- 0.5) x 10(-15)E(eV)(-1.05 +/- 0.02) cm(2) and sigma = (2.3 +/- 0.4) x 10(-15)E(eV)(-1.10 +/- 0.02) cm(2) for DCCCN+ and DCCCND+, respectively. From these data, thermal reaction rates of k(T) = (1.5 +/- 0.3) x 10(-6)(T/300 K)(-0.60 +/- 0.02) cm(3) s(-1) and k(T) = (1.5 +/- 0.3) x 10(-6)(T/300 K)(-0.58 +/- 0.02) cm(3) s(-1) were calculated for DCCCN+ and DCCCND+, respectively. These rates and branching ratios are compared with those hitherto used in astrophysical models.
  •  
8.
  • Geppert, W D, et al. (författare)
  • Dissociative recombination of (SO2+)-O-18 : Evidence for three-body breakup
  • 2004
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 610:2, s. 1228-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Branching ratios and absolute cross sections have been measured for the dissociative recombination of (SO2+)-O-18 using the CRYRING ion storage ring. The branching ratio of the (SO2+)-O-18 + e(-)-->(SO)-O-18+O-18 channel amounts to 61%, while the three-body breakup (SO2+)-O-18 + e(-)-->S+2(18)O accounts for the remaining 39% of the total reaction. The cross section of the reaction could be fitted by the expression sigma=(1.2+/-0.4)x10(-15) E-0.96+/-0.02 cm(2), which leads to a thermal reaction rate of k(T)=(4.6+/-0.2)x10(-7)(T/300 K)(-0.52+/-0.02) cm(3) mol(-1) s(-1).
  •  
9.
  • Vigren, Erik, et al. (författare)
  • Reassessment of the dissociative recombination of n2h+ at cryring
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 757:1, s. 34-
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociative recombination (DR) of N2H+ has been reinvestigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. Thermal rate coefficients for electron temperatures between 10 and 1000 K have been deduced. We show that electron recombination is expected to play an approximately equally important role as CO in the removal of N2H+ in dark interstellar clouds. We note that a deeper knowledge on the influence of the ions' rotational temperature in the DR of N2H+ would be helpful to set further constraints on the relative importance of the different destruction mechanisms for N2H+ in these environments. The branching fractions in the DR of N2H+ have been reinvestigated at similar to 0 eV relative kinetic energy, showing a strong dominance of the N-2 + H production channel (93(-2)(+4)%) with the rest leading to NH + N. These results are in good agreement with flowing afterglow experiments and in disagreement with an earlier measurement at CRYRING.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy