SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaminska D) ;pers:(af Ugglas Magnus)"

Sökning: WFRF:(Kaminska D) > Af Ugglas Magnus

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hamberg, Mathias, et al. (författare)
  • Experimental Studies of (HCO+)-C-13 Recombining with Electrons at Energies between 2-50 000 meV
  • 2014
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 118:31, s. 6034-6049
  • Tidskriftsartikel (refereegranskat)abstract
    • An investigation into the dissociative recombination process for (HCO+)-C-13 using merged ion-electron beam methods has been performed at the heavy ion storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions of the different product channels at similar to 0 eV collision energy to be the following: CO + H 87 +/- 2%, OH + C 9 +/- 2%, and O + CH 4 +/- 2%. The formation of electronically excited CO in the dominant reaction channel has also been studied, and we report the following tentative branching fractions for the different CO product electronic states: CO(X (1)Sigma(+)) + H, 54 +/- 10%; CO(a (3)Pi) + H, 23 +/- 4%; and CO(a' (3)Sigma(+)) + H, 23 +/- 4%. The absolute cross section between similar to 2-50 000 meV was measured and showed resonance structures between 3 and 15 eV. The cross section was fitted in the energy range relevant to astrophysics, i.e., between 1 and 300 meV, and was found to follow the expression sigma = 1.3 +/- 0.3 X 10(-16) E-1.29 +/- 0.05 cm(2) and the corresponding thermal rate constant was determined to be k(T) = 2.0 +/- 0.4 X 10(-7)(T/300)(-0.79 +/- 0.05) cm(3) s(-1). Radioastronomical observations with the IRAM 30 m telescope of HCO+ toward the Red Rectangle yielded an upper column density limit of 4 X 10(11) cm(-2) of HCO+ at the 1 sigma level in that object, indicating that previous claims that the dissociative recombination of HCO+ plays an important role in the production of excited CO molecules emitting the observed Cameron bands in that object are not supported.
  •  
3.
  • Hamberg, Mathias, et al. (författare)
  • Experimental studies of the dissociative recombination processes for the dimethyl ether ions CD3OCD2+ and (CD3)2OD
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 514, s. A83-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Determination of branching fractions, cross sections and thermal rate coefficients for the dissociative recombination of CD3OCD2+ (0-0.3 eV) and (CD3)2OD+ (0-0.2 eV) at the low relative kinetic energies encountered in the interstellar medium. Methods: The measurements were carried out using merged electron and ion beams at the CRYRING storage ring, Stockholm, Sweden. Results: For (CD3)2OD+ we have experimentally determined the branching fraction for ejection of a single hydrogen atom in the DR process to be maximally 7% whereas 49% of the reactions involve the break up of the COC chain into two heavy fragments and 44% ruptures both C-O bonds. The DR of CD3OCD2+ is dominated by fragmentation of the COC chain into two heavy fragments. The measured thermal rate constants and cross sections are k(T) =1.7 ± 0.5 × 10−6(T/300)−0.77±0.01 cm3s−1,  σ= 1.2 ± 0.4 × 10−15(Ecm[eV])−1.27 ± 0.01 cm2 and k(T) = 1.7 ± 0.6 × 10−6(T/300)−0.70±0.02 cm3s−1,σ= 1.7 ± 0.6 × 10−15(Ecm[eV])−1.20±0.02 cm2 for CD3OCD2+ and (CD3)2OD+, respectively.
  •  
4.
  • Tom, Brian A., et al. (författare)
  • Dissociative recombination of highly enriched para-H-3(+)
  • 2009
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 130:3, s. 31101-
  • Tidskriftsartikel (refereegranskat)abstract
    • The determination of the dissociative recombination rate coefficient of H-3(+) has had a turbulent history, but both experiment and theory have recently converged to a common value. Despite this convergence, it has not been clear if there should be a difference between the rate coefficients for ortho-H-3(+) and para-H-3(+). A difference has been predicted theoretically and could conceivably impact the ortho:para ratio of H-3(+) in the diffuse interstellar medium, where H-3(+) has been widely observed. We present the results of an experiment at the CRYRING ion storage ring in which we investigated the dissociative recombination of highly enriched (similar to 83.6%) para-H-3(+) using a supersonic expansion source that produced ions with T-rot similar to 60-100 K. We observed an increase in the low energy recombination rate coefficient of the enriched para-H-3(+) by a factor of similar to 1.25 in comparison to H-3(+) produced from normal H-2 (ortho:para=3:1). The ratio of the rate coefficients of pure para-H-3(+) to that of pure ortho-H-3(+) is inferred to be similar to 2 at low collision energies; the corresponding ratio of the thermal rate coefficients is similar to 1.5 at electron temperatures from 60 to 1000 K. We conclude that this difference is unlikely to have an impact on the interstellar ortho:para ratio of H-3(+).
  •  
5.
  • Vigren, Erik, et al. (författare)
  • Dissociative recombination of nitrile ions with implications for Titan's upper atmosphere
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 60:1, s. 102-106
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrile ions are abundant in Titan's upper atmosphere and are expected to be lost mainly via dissociative recombination with free electrons. We review in this paper a series of experimental results on the dissociative recombination reactions of nitrile ions known/expected to be present in Titan's upper atmosphere. The experiments were all performed at the heavy ion storage ring CRYRING in Stockholm, Sweden, and the results presented here include information on rate coefficients at electron temperatures relevant for Titan's upper atmosphere as well as information on the product branching fractions of the reactions. We discuss implications of the results for Titan's atmosphere. As an example the presented results support a statement by Krasnopolsky (2009) that nitriles do not degrade to yield N-2 again in Titan's atmosphere, indicating that condensation and polymerization with precipitation to the surface are their ultimate fate.
  •  
6.
  • Vigren, Erik, et al. (författare)
  • Dissociative Recombination of Protonated Formic Acid : Implications for Molecular Cloud and Cometary Chemistry
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 709:2, s. 1429-1434
  • Tidskriftsartikel (refereegranskat)abstract
    • At the heavy ion storage ring CRYRING in Stockholm, Sweden, we have investigated the dissociative recombination of DCOOD2+ at low relative kinetic energies, from similar to 1 meV to 1 eV. The thermal rate coefficient has been found to follow the expression k(T) = 8.43 x 10(-7) (T/300)(-0.78) cm(3) s(-1) for electron temperatures, T, ranging from similar to 10 to similar to 1000 K. The branching fractions of the reaction have been studied at similar to 2 meV relative kinetic energy. It has been found that similar to 87% of the reactions involve breaking a bond between heavy atoms. In only 13% of the reactions do the heavy atoms remain in the same product fragment. This puts limits on the gas-phase production of formic acid, observed in both molecular clouds and cometary comae. Using the experimental results in chemical models of the dark cloud, TMC-1, and using the latest release of the UMIST Database for Astrochemistry improves the agreement with observations for the abundance of formic acid. Our results also strengthen the assumption that formic acid is a component of cometary ices.
  •  
7.
  • Vigren, Erik, et al. (författare)
  • Dissociative Recombination of Protonated Propionitrile, CH3CH2CNH+ : Implications for Titan's Upper Atmosphere
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 722:1, s. 847-850
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociative recombination of protonated propionitrile, CH3CH2CNH+, has been investigated at the heavy ion storage ring, CRYRING, at the Manne Siegbahn Laboratory, Stockholm University, Sweden. The thermal rate coefficient has been deduced to follow k(T) = (1.5 ± 0.2) × 10–6 (T/300)–0.76 ± 0.02 cm3 s–1 for electron temperatures ranging from ~10 to ~1000 K. Measurements of the branching fractions were performed at ~0 eV relative kinetic energy. It has been found that in 43% ± 2% of the reactions the four heavy atoms remain in the same product fragment. An equal portion of the reactions leads to products where one of the heavy atoms is split off from the other three and 14% ± 1% result in a breakup into two heavy fragments containing two heavy atoms each. We discuss the significance of the data to Titan's upper atmosphere.
  •  
8.
  • Vigren, Erik, et al. (författare)
  • Dissociative recombination of the acetaldehyde cation, CH3CHO
  • 2010
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 12:37, s. 11670-11673
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociative recombination of the acetaldehyde cation, CH3CHO+, has been investigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. The dependence of the absolute cross section of the reaction on the relative kinetic energy has been determined and a thermal rate coefficient of k(T) = (1.5 +/- 0.2) x 10(-6) (T/300)(-0.70 +/- 0.02) cm(3) s(-1) has been deduced, which is valid for electron temperatures between similar to 10 and 1000 K. The branching fractions of the reaction were studied at similar to 0 eV relative kinetic energy and we found that breaking one of the bonds between two of the heavy atoms occurs in 72 +/- 2% of the reactions. In the remaining events the three heavy atoms stay in the same product fragment. While the branching fractions are fairly similar to the results from an earlier investigation into the dissociative recombination of the fully deuterated acetaldehyde cation, CD3CDO+, the thermal rate coefficient is somewhat larger for CH3CHO+. Astrochemical implications of the results are discussed.
  •  
9.
  • Zhaunerchyk, Vitali, et al. (författare)
  • Investigation into the vibrational yield of OH products in the OH plus H plus H channel arising from the dissociative recombination of H3O
  • 2009
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 130:21, s. 214302-
  • Tidskriftsartikel (refereegranskat)abstract
    • The vibrational population of the hydroxyl radical, OH, formed in the OH+H+H channel arising from the dissociative recombination of the hydronium ion, H3O+, has been investigated at the storage ring CRYRING using a position-sensitive imaging detector. Analysis shows that the OH fragments are predominantly produced in the v=0 and v=1 states with almost equal probabilities. This observation is in disagreement with earlier FALP experiments, which reported OH(v=0) as the dominant product. Possible explanations for this difference are discussed.
  •  
10.
  • Hamberg, Mathias, et al. (författare)
  • Experimental studies of the dissociative recombination for CD3CDOD+ and CH3CH2OH2
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Aims:  Determination of branching fractions, cross sections and thermal rate constants for the dissociative recombination of CD3CDOD+ and CH3CH2OH2+ at the low relative kinetic energies encountered in the interstellar medium. Methods: The experiments were carried out by merging an ion and electron beam at the heavy ion storage ring CRYRING, Stockholm, Sweden. Results: Break-up of the CCO structure into three heavy fragments is not found for either of the ions. Instead the CCO structure is retained in 23 ± 3% of the DR reactions of CD3CDOD+ and 7 ± 3% in the DR of CH3CH2OH2+, whereas rupture into two heavy fragments occurs in 77 ± 3% and 93 ± 3% of the DR events of the respective ions. The measured cross sections were fitted between 1-200 meV yielding the following thermal rate constants and cross-section dependencies on the relative kinetic energy: σ(Ecm[eV]) = 1.7 ± 0.3 × 10−15(Ecm[eV])−1.23±0.02 cm2 and k(T) = 1.9 ± 0.4 × 10−6(T/300)−0.73±0.02 cm3s−1 for CH3CH2OH2+  as well as k(T) = 1.1 ± 0.4 × 10−6(T/300)−0.74±0.05 cm3s−1 and σ(Ecm[eV]) = 9.2 ± 4 × 10−16(Ecm[eV])−1.24±0.05 cm2 for CD3CDOD+.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy