SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kanis John A) ;pers:(Mellström Dan 1945)"

Search: WFRF:(Kanis John A) > Mellström Dan 1945

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Vandenput, Liesbeth, et al. (author)
  • A meta-analysis of previous falls and subsequent fracture risk in cohort studies
  • 2024
  • In: Osteoporosis International. - : Springer. - 0937-941X .- 1433-2965. ; 35:3, s. 469-494
  • Journal article (peer-reviewed)abstract
    • SummaryThe relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm.IntroductionPrevious falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD).MethodsThe resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients.ResultsFalls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33–1.51) and men (HR 1.53, 95% CI 1.41–1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27–1.84) in men vs. HR 1.32 (95% CI 1.20–1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men.ConclusionsA previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction.
  •  
2.
  • Johansson, Helena, 1981, et al. (author)
  • A meta-analysis of the association of fracture risk and body mass index in women.
  • 2014
  • In: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - : Wiley. - 1523-4681. ; 29:1, s. 223-33
  • Journal article (peer-reviewed)abstract
    • Several recent studies suggest that obesity may be a risk factor for fracture. The aim of this study was to investigate the association between body mass index (BMI) and future fracture risk at different skeletal sites. In prospective cohorts from more than 25 countries, baseline data on BMI were available in 398,610 women with an average age of 63 (range, 20-105) years and follow up of 2.2 million person-years during which 30,280 osteoporotic fractures (6457 hip fractures) occurred. Femoral neck BMD was measured in 108,267 of these women. Obesity (BMI ≥ 30kg/m(2) ) was present in 22%. A majority of osteoporotic fractures (81%) and hip fractures (87%) arose in non-obese women. Compared to a BMI of 25kg/m(2) , the hazard ratio (HR) for osteoporotic fracture at a BMI of 35kg/m(2) was 0.87 (95% confidence interval [CI], 0.85-0.90). When adjusted for bone mineral density (BMD), however, the same comparison showed that the HR for osteoporotic fracture was increased (HR, 1.16; 95% CI, 1.09-1.23). Low BMI is a risk factor for hip and all osteoporotic fracture, but is a protective factor for lower leg fracture, whereas high BMI is a risk factor for upper arm (humerus and elbow) fracture. When adjusted for BMD, low BMI remained a risk factor for hip fracture but was protective for osteoporotic fracture, tibia and fibula fracture, distal forearm fracture, and upper arm fracture. When adjusted for BMD, high BMI remained a risk factor for upper arm fracture but was also a risk factor for all osteoporotic fractures. The association between BMI and fracture risk is complex, differs across skeletal sites, and is modified by the interaction between BMI and BMD. At a population level, high BMI remains a protective factor for most sites of fragility fracture. The contribution of increasing population rates of obesity to apparent decreases in fracture rates should be explored. © 2014 American Society for Bone and Mineral Research.
  •  
3.
  • Kanis, John A, et al. (author)
  • A meta-analysis of prior corticosteroid use and fracture risk.
  • 2004
  • In: Journal of bone and mineral research. - 0884-0431 .- 1523-4681. ; 19:6, s. 893-9
  • Journal article (peer-reviewed)abstract
    • The relationship between use of corticosteroids and fracture risk was estimated in a meta-analysis of data from seven cohort studies of approximately 42,000 men and women. Current and past use of corticosteroids was an important predictor of fracture risk that was independent of prior fracture and BMD. INTRODUCTION: The aims of this study were to validate that corticosteroid use is a significant risk factor for fracture in an international setting and to explore the effects of age and sex on this risk. MATERIALS AND METHODS: We studied 42,500 men and women from seven prospectively studied cohorts followed for 176,000 patient-years. The cohorts comprised the EPOS/EVOS study, CaMos, the Rotterdam Study, Dubbo Osteoporosis Epidemiology Study (DOES), and prospective cohorts at Sheffield, Rochester, and Gothenburg. The effect of ever use of corticosteroids, BMD, age, and sex on all fracture, osteoporotic fracture, and hip fracture risk alone was examined using Poisson regression in each cohort and for each sex. The results of the different studies were merged from the weighted beta coefficients. RESULTS: Previous corticosteroid use was associated with a significantly increased risk of any fracture, osteoporotic fracture, and hip fracture when adjusted for BMD. Relative risk of any fracture ranged from 1.98 at the age of 50 years to 1.66 at the age of 85 years. For osteoporotic fracture, the range of relative risk was 2.63-1.71, and for hip fracture 4.42-2.48. The estimate of relative risk was higher at younger ages, but not significantly so. No significant difference in risk was seen between men and women. The risk was marginally and not significantly upwardly adjusted when BMD was excluded from the model. The risk was independent of prior fracture. In the three cohorts that documented current corticosteroid use, BMD was significantly reduced at the femoral neck, but fracture risk was still only partly explained by BMD. CONCLUSION: We conclude that prior and current exposure to corticosteroids confers an increased risk of fracture that is of substantial importance beyond that explained by the measurement of BMD. Its identification on an international basis validates the use of this risk factor in case-finding strategies.
  •  
4.
  • Westbury, Leo D., et al. (author)
  • Predictive value of sarcopenia components for all-cause mortality: findings from population-based cohorts
  • 2024
  • In: AGING CLINICAL AND EXPERIMENTAL RESEARCH. - : Springer. - 1594-0667 .- 1720-8319. ; 36:1
  • Journal article (peer-reviewed)abstract
    • Background Low grip strength and gait speed are associated with mortality. However, investigation of the additional mortality risk explained by these measures, over and above other factors, is limited.Aim We examined whether grip strength and gait speed improve discriminative capacity for mortality over and above more readily obtainable clinical risk factors.Methods Participants from the Health, Aging and Body Composition Study, Osteoporotic Fractures in Men Study, and the Hertfordshire Cohort Study were analysed. Appendicular lean mass (ALM) was ascertained using DXA; muscle strength by grip dynamometry; and usual gait speed over 2.4-6 m. Verified deaths were recorded. Associations between sarcopenia components and mortality were examined using Cox regression with cohort as a random effect; discriminative capacity was assessed using Harrell's Concordance Index (C-index).Results Mean (SD) age of participants (n = 8362) was 73.8(5.1) years; 5231(62.6%) died during a median follow-up time of 13.3 years. Grip strength (hazard ratio (95% CI) per SD decrease: 1.14 (1.10,1.19)) and gait speed (1.21 (1.17,1.26)), but not ALM index (1.01 (0.95,1.06)), were associated with mortality in mutually-adjusted models after accounting for age, sex, BMI, smoking status, alcohol consumption, physical activity, ethnicity, education, history of fractures and falls, femoral neck bone mineral density (BMD), self-rated health, cognitive function and number of comorbidities. However, a model containing only age and sex as exposures gave a C-index (95% CI) of 0.65(0.64,0.66), which only increased to 0.67(0.67,0.68) after inclusion of grip strength and gait speed.Conclusions Grip strength and gait speed may generate only modest adjunctive risk information for mortality compared with other more readily obtainable risk factors.
  •  
5.
  • Johnell, Olof, et al. (author)
  • Predictive value of BMD for hip and other fractures.
  • 2005
  • In: Journal of bone and mineral research. - 0884-0431 .- 1523-4681. ; 20:7, s. 1185-94
  • Journal article (peer-reviewed)abstract
    • The relationship between BMD and fracture risk was estimated in a meta-analysis of data from 12 cohort studies of approximately 39,000 men and women. Low hip BMD was an important predictor of fracture risk. The prediction of hip fracture with hip BMD also depended on age and z score. INTRODUCTION: The aim of this study was to quantify the relationship between BMD and fracture risk and examine the effect of age, sex, time since measurement, and initial BMD value. MATERIALS AND METHODS: We studied 9891 men and 29,082 women from 12 cohorts comprising EVOS/EPOS, EPIDOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and 2 cohorts from Gothenburg. Cohorts were followed for up to 16.3 years and a total of 168,366 person-years. The effect of BMD on fracture risk was examined using a Poisson model in each cohort and each sex separately. Results of the different studies were then merged using weighted coefficients. RESULTS: BMD measurement at the femoral neck with DXA was a strong predictor of hip fractures both in men and women with a similar predictive ability. At the age of 65 years, risk ratio increased by 2.94 (95% CI = 2.02-4.27) in men and by 2.88 (95% CI = 2.31-3.59) in women for each SD decrease in BMD. However, the effect was dependent on age, with a significantly higher gradient of risk at age 50 years than at age 80 years. Although the gradient of hip fracture risk decreased with age, the absolute risk still rose markedly with age. For any fracture and for any osteoporotic fracture, the gradient of risk was lower than for hip fractures. At the age of 65 years, the risk of osteoporotic fractures increased in men by 1.41 per SD decrease in BMD (95% CI = 1.33-1.51) and in women by 1.38 per SD (95% CI = 1.28-1.48). In contrast with hip fracture risk, the gradient of risk increased with age. For the prediction of any osteoporotic fracture (and any fracture), there was a higher gradient of risk the lower the BMD. At a z score of -4 SD, the risk gradient was 2.10 per SD (95% CI = 1.63-2.71) and at a z score of -1 SD, the risk was 1.73 per SD (95% CI = 1.59-1.89) in men and women combined. A similar but less pronounced and nonsignificant effect was observed for hip fractures. Data for ultrasound and peripheral measurements were available from three cohorts. The predictive ability of these devices was somewhat less than that of DXA measurements at the femoral neck by age, sex, and BMD value. CONCLUSIONS: We conclude that BMD is a risk factor for fracture of substantial importance and is similar in both sexes. Its validation on an international basis permits its use in case finding strategies. Its use should, however, take account of the variations in predictive value with age and BMD.
  •  
6.
  • Kanis, John A, et al. (author)
  • A meta-analysis of milk intake and fracture risk: low utility for case finding.
  • 2005
  • In: Osteoporosis international. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 16:7, s. 799-804
  • Journal article (peer-reviewed)abstract
    • A low intake of calcium is widely considered to be a risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the effect of age, gender and bone mineral density (BMD) on this risk. We studied 39,563 men and women (69% female) from six prospectively studied cohorts comprising EVOS/EPOS, CaMos, DOES, the Rotterdam study, the Sheffield study and a cohort from Gothenburg. Cohorts were followed for 152,000 person-years. The effect of calcium intake as judged by the intake of milk on the risk of any fracture, any osteoporotic fracture and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age and BMD. The results of the different studies were merged by using the weighted beta-coefficients. A low intake of calcium (less than 1 glass of milk daily) was not associated with a significantly increased risk of any fracture, osteoporotic fracture or hip fracture. There was no difference in risk ratio between men and women. When both sexes were combined there was a small but non-significant increase in the risk of osteoporotic and of hip fracture. There was also a small increase in the risk of an osteoporotic fracture with age which was significant at the age of 80 years (RR = 1.15; 95% CI = 1.02-1.30) and above. The association was no longer significant after adjustment for BMD. No significant relationship was observed by age for low milk intake and hip fracture risk. We conclude that a self-reported low intake of milk is not associated with any marked increase in fracture risk and that the use of this risk indicator is of little or no value in case-finding strategies.
  •  
7.
  • McCloskey, Eugene V, et al. (author)
  • A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX
  • 2016
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 31:5, s. 940-948
  • Journal article (peer-reviewed)abstract
    • Trabecular bone score (TBS) is a grey-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a BMD-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables and outcomes during follow up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% CI: 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR 1.32, 95%CI: 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95%CI: 1.65, 1.87 vs. 1.70, 95%CI: 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines.
  •  
8.
  • Harvey, Nicholas C., et al. (author)
  • Falls Predict Fractures Independently of FRAX Probability : A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study
  • 2018
  • In: Journal of Bone and Mineral Research. - : WILEY. - 0884-0431 .- 1523-4681. ; 33:3, s. 510-516
  • Journal article (peer-reviewed)abstract
    • Although prior falls are a well-established predictor of future fracture, there is currently limited evidence regarding the specific value of falls history in fracture risk assessment relative to that of other clinical risk factors and bone mineral density (BMD) measurement. We therefore investigated, across the three Osteoporotic Fractures in Men (MrOS) Study cohorts, whether past falls predicted future fracture independently of FRAX and whether these associations varied with age and follow-up time. Elderly men were recruited from MrOS Sweden, Hong Kong, and USA. Baseline data included falls history (over the preceding 12 months), clinical risk factors, BMD at femoral neck, and calculated FRAX probabilities. An extension of Poisson regression was used to investigate the associations between falls, FRAX probability, and incident fracture, adjusting for age, time since baseline, and cohort in base models; further models were used to investigate interactions with age and follow-up time. Random-effects meta-analysis was used to synthesize the individual country associations. Information on falls and FRAX probability was available for 4365 men in USA (mean age 73.5 years; mean follow-up 10.8 years), 1823 men in Sweden (mean age 75.4 years; mean follow-up 8.7 years), and 1669 men in Hong Kong (mean age 72.4 years; mean follow-up 9.8 years). Rates of past falls were similar at 20%, 16%, and 15%, respectively. Across all cohorts, past falls predicted incident fracture at any site (hazard ratio [HR]=1.69; 95% confidence interval [CI] 1.49, 1.90), major osteoporotic fracture (MOF) (HR=1.56; 95% CI 1.33, 1.83), and hip fracture (HR=1.61; 95% CI 1.27, 2.05). Relationships between past falls and incident fracture remained robust after adjustment for FRAX probability: adjusted HR (95% CI) any fracture: 1.63 (1.45, 1.83); MOF: 1.51 (1.32, 1.73); and hip: 1.54 (1.21, 1.95). In conclusion, past falls predicted incident fracture independently of FRAX probability, confirming the potential value of falls history in fracture risk assessment.
  •  
9.
  • Harvey, Nicholas C., et al. (author)
  • Measures of Physical Performance and Muscle Strength as Predictors of Fracture Risk Independent of FRAX, Falls, and aBMD : A Meta-Analysis Of The Osteoporotic Fractures In Men (MrOS) Study
  • 2018
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 33:12, s. 2150-2157
  • Journal article (peer-reviewed)abstract
    • Measures of muscle mass, strength, and function predict risk of incident fractures, but it is not known whether this risk information is additive to that from FRAX (fracture risk assessment tool) probability. In the Osteoporotic Fractures in Men (MrOS) Study cohorts (Sweden, Hong Kong, United States), we investigated whether measures of physical performance/appendicular lean mass (ALM) by DXA predicted incident fractures in older men, independently of FRAX probability. Baseline information included falls history, clinical risk factors for falls and fractures, femoral neck aBMD, and calculated FRAX probabilities. An extension of Poisson regression was used to investigate the relationship between time for five chair stands, walking speed over a 6 m distance, grip strength, ALM adjusted for body size (ALM/height(2)), FRAX probability (major osteoporotic fracture [MOF]) with or without femoral neck aBMD, available in a subset of n = 7531), and incident MOF (hip, clinical vertebral, wrist, or proximal humerus). Associations were adjusted for age and time since baseline, and are reported as hazard ratios (HRs) for first incident fracture per SD increment in predictor using meta-analysis. 5660 men in the United States (mean age 73.5 years), 2764 men in Sweden (75.4 years), and 1987 men in Hong Kong (72.4 years) were studied. Mean follow-up time was 8.7 to 10.9 years. Greater time for five chair stands was associated with greater risk of MOF (HR 1.26; 95% CI, 1.19 to 1.34), whereas greater walking speed (HR 0.85; 95% CI, 0.79 to 0.90), grip strength (HR 0.77; 95% CI, 0.72 to 0.82), and ALM/height(2) (HR 0.85; 95% CI, 0.80 to 0.90) were associated with lower risk of incident MOF. Associations remained largely similar after adjustment for FRAX, but associations between ALM/height(2) and MOF were weakened (HR 0.92; 95% CI, 0.85 to 0.99). Inclusion of femoral neck aBMD markedly attenuated the association between ALM/height(2) and MOF (HR 1.02; 95% CI, 0.96 to 1.10). Measures of physical performance predicted incident fractures independently of FRAX probability. Whilst the predictive value of ALM/height(2) was substantially reduced by inclusion of aBMD requires further study, these findings support the consideration of physical performance in fracture risk assessment.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view