SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kapaklis Vassilios) ;pers:(Hjörvarsson Björgvin professor)"

Sökning: WFRF:(Kapaklis Vassilios) > Hjörvarsson Björgvin professor

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnalds, Unnar B., 1976- (författare)
  • Magnetic Order in Artificial Structures
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The topic of this thesis is the investigation of the magnetic properties of artificially created magnetic structures. Applying different characterization techniques, ranging from direct imaging methods to reciprocal space techniques, the properties of lithographically patterned arrays of magnetic thin film and multilayer elements are investigated by exploring their magnetic state, extending from the atomic scale up to collective ordering phenomena of nano-magnetic elements.Laterally patterned amorphous multilayer arrays of combined circular and ellipsoidal islands were investigated. The arrays contain a variety of length scales, ranging from their nanometer scale multilayer structure to their lateral periodicity in the micrometer range. The attributes of these arrays are explored using different techniques, applicable for addressing the magnetization at different length scales, including magneto-optical techniques, micromagnetic simulations and x-ray resonant magnetic scattering.Arrays of dipole interacting elongated magnetic elements composed of Pd(Fe) thin films were investigated. Pd(Fe) films have a low Curie temperature which can be tuned by the thickness of the Fe layer embedded in Pd. By this, the interaction and the shape anisotropy energies can be brought down to energy scales comparable to room temperature enabling the possibility of investigating the effect of thermal excitations on such arrays. The temperature dependent magnetization of an artificial square spin ice array was investigated by magneto-optical measurements demonstrating the possibility of observing an order-disorder transition in an artificial square spin ice system. The role of dipolar interactions and the possibility of achieving thermal ground state ordering was then further investigated by magnetically sensitive photoemission electron microscopy imaging of ring arrangements of elongated Pd(Fe) elements. The results reveal a high probability of achieving a thermal ground state ordering of the magnetization of the islands.
  •  
2.
  • Carstensen, Hauke (författare)
  • Self-assembly of magnetic particles
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Self-assembly is the spontaneous formation of larger structures from small building blocks. This process is driven and determined by the interactions between the constituents. Examples of self assembly are found almost everywhere and, in particular, biological systems in general rely on a hierarchical formation of structures over a range of length scales. Technologically, self-assembly can be used to form mesoscopic structures and artificial crystals. In the case of particles with micrometer size suspended in a liquid phase, it is possible to use optical microscopy for the the investigation of self-assembly.In this thesis, the self-assembly of microbeads with tunable magnetic interactions is studied, based on the statistic analysis of microscope images and computer simulations. Magnetic and non-magnetic microbeads are suspended in a ferrofluid, which is a dispersion of magnetic nanoparticles in water. As a result, the magnetic properties of the microbeads in the ferrofluid are altered and can be described by effective magnetic susceptibilities and magnetic dipole moments, which can be tuned continuously. The liquid is confined between glass slides and effectively the microbeads are studied in a 2D geometry under a magnetic field, applied either in- or out-of-plane. The resulting structures are detected by image analysis algorithms, analyzed and correlated to the dipolar interaction between the beads, as well as to macroscopic quantities, like the particle density and ratio. For the in-plane field a phase transition from square to hexagonal lattice is observed. This phase transition is explained by the change in dipole interaction between the microbeads as the moments change from anti-parallel to parallel alignment.  For the out-of-plane field the situation becomes diverse and more phases appear. It turns out that the phase formation in this case is strongly dependent on the bead ratio, density and interactions.We identify regions in the phase diagram, where isolated beads, percolated structures, and crystals dominate. To cover a wide parameter range the experiments are complemented by computer simulations. The tools developed in this thesis enable us to construct phase diagrams extracted from direct imaging and dependence on the extracted relevant parameters.
  •  
3.
  • Melander, Emil, 1985- (författare)
  • Magnetoplasmonic nanostructures
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Surfaces that are nanopatterned, metallic, and magnetic can support surface plasmon resonances, providing an alternative and effective way to reconfigure flat optical components. Utilising a range of near- and far-field characterisation techniques, the optical and magneto-optical properties of lithographically patterned thin magnetic films are investigated.A magneto-optical diffractometer was designed, assembled, and commissioned to characterise periodic magneto-plasmonic nanostructures. For Ni and Co nanostructured antidot arrays, enhanced values of the magneto-optical Kerr rotation were recorded for energies and angles corresponding to excitations of surface plasmon polaritons. This enhancement was found to be thickness dependent. Modification of the optical properties via applied transverse magnetic fields and the excitation of surface plasmon polaritons, was demonstrated for an antidot array of pure Ni. The excitation was also shown to enhance the generation of second harmonics, as well as further activate nonlinear-optical mechanisms.In order to fully resolve and explain the source of this remarkable magneto-optical activity, near field probing techniques were used. This allows for mapping the electric near-field with a sub-wavelength resolution, thereby revealing the interplay between the light and the nanostructured lattice. The measurements show that the electric near field intensification, induced by plasmon excitation, increases the polarisation conversion, which correlates to the observed magneto-optical Kerr rotation.
  •  
4.
  • Ravensburg, Anna Lena (författare)
  • Growth of high quality Fe thin films : A study of the effect of mismatch strain on the physical properties of Fe
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work in this licentiate is devoted to investigating the epitaxial growth of thin Fe layers on MgAl2O4 (001) and MgO (001) substrates using dc magnetron sputtering. The aim is to qualitatively and quantitatively determine the crystal quality of the grown Fe layers depending on their thickness, substrate material, and selected deposition parameters. The effect of the crystal quality on the magnetic and electronic transport properties is discussed. The structural characterization of the epitaxial Fe thin films is carried out by x-ray reflectometry and diffraction as well as transmission electron microscopy. X-ray scattering measurements and analysis with related models allow for a quantitative determination of layering, crystal quality, and strain profiles in the growing Fe. Magnetic properties are determined using a combination of longitudinal magneto-optical Kerr effect measurements, Kerr microscopy, and scanning electron microscopy with polarization analyser. Electronic transport properties are characterized by four-point probe measurements of the thin films. The epitaxial growth of Fe is found to be highly substrate dependent: Fe layers grown on MgAl2O4 have a significantly higher crystal quality, as compared to Fe grown on MgO. The difference in crystal quality is attributed to different strain states in Fe, which is supported by theoretical calculations of the critical thickness on both substrates. Moreover, an anomalous elastic response in Fe at the thin film limit is found. The magnetic properties of Fe are weakly reflecting the differences in crystal quality of the Fe layers. However, the difference in crystal quality affects the electronic transport properties. The results of this study on epitaxial Fe layers can provide insights into strain and defect engineering in Fe thin films, which can additionally serve as model systems for finite size effects.
  •  
5.
  • Ravensburg, Anna L. (författare)
  • Order and interfaces in epitaxial heterostructures : Structure and magnetism
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work in this dissertation is devoted to investigating order and interfaces in epitaxial heterostructures. To achieve that the software tool box GenL was developed for simulating and fitting x-ray diffraction patterns from epitaxial thin films, which is used to access structural information on the length scales of interfaces and atomic bonds. Employing GenL, it is shown that a small lattice mismatch between substrate and epitaxial layer is not the sole origin of high crystal quality, as demonstrated for nearly strain-free epitaxial growth of tungsten on sapphire with a lattice mismatch of up to 19.4 %. Furthermore, it is discussed that electronic states at the substrate/film interface can have substantial significance for the crystal structure of an epitaxial layer. For instance, despite a nearly mismatch-free interface of body-centered cubic iron on spinel, the presence of a boundary-induced interface layer with tetragonally distorted crystal structure is discovered, which has a profound impact on the magnetic properties. Finally, when creating multilayered structures, not only the interface states but the total structure is found to influence the physical properties, which is demonstrated for the interlayer exchange coupling in [Fe/MgO]Nsuperlattices.Note: This PhD thesis is partly based on the licentiate dissertation "Growth of high quality Fe thin films" by Anna L. Ravensburg, Uppsala University, 2022. Particularly parts of: Chapter 1, Sections 2.0, 2.1, 2.2, 3.0, 3.1, 3.2, 3.3, 5.1, and Fig. 2.6 are adapted from the licentiate thesis with minor edits and updates.
  •  
6.
  • Skovdal, Björn Erik (författare)
  • Phase transitions in magnetic metamaterials
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic metamaterials consisting of arrays of densely packed, two-dimensional nanoscale magnetic islands have degrees of freedom on two separate length scales: inside the islands, and among them. These degrees of freedom can be tuned by e.g. size, shape, island separation and lattice geometry. The material can thereby be tailored to display behavior corresponding to conventional universality classes, wherein small elongated islands behave like Ising spins and circular ones behave like XY-spins. Making the islands larger promotes inner degrees of freedom in the form of inner magnetic textures. Some of these textures, such as magnetic vortices in circular islands, have a critical impact on the interaction between the islands and therefore also on the global order.In this thesis, the interplay between the inner textures and island-island interactions is explored, anticipating the emergence of behavior beyond that of conventional universality classes. A transition temperature between static and dynamic inner textureswas found in systems with elongated islands. In arrays of circular islands, a collapse from metastable collinear islands to vortex islands was observed, with a dependence on both island size and lattice orientation. Finally, a model was created based on key aspects of the circular islands, and using Monte Carlo calculations, an exotic phase diagram with a tricritical point and first order phase transitions was found. The transition is caused by a mutual dependence on the degrees of freedom inside, and among the elements. The experimental and numerical results presented in this thesis signify the existence of such phase transitions in the multiscale material.
  •  
7.
  • Stopfel, Henry, 1984- (författare)
  • Tailoring the magnetic order in mesoscopic spin systems
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mesoscopic spin systems can be designed and fabricated using modern nano-fabrication techniques. These systems can contain large numbers of patterned ferromagnetic elements, for which the shape will generally determine their effective mesospin dimensionality. The lateral arrangement of these mesospins can be further used to tune the interactions between them.With an appropriate choice of material, it is possible to define a temperature range where thermal fluctuations of these mesospins are experimentally accessible. To actively define this range, we use δ-doped Palladium, a three-layer system of Palladium—Iron—Palladium, for which the Curie-temperature scales with the Iron layer thickness. The patterned mesoscopic elements used in this work have a stadium-like shape that promotes a single magnetic domain state, thus making these islands behave as one-dimensional Ising-like mesospins that can be observed using magnetic imaging techniques.We investigate the impact on the magnetic order resulting from modifications of the square spin ice geometry. By adding, removing and merging elements in the square artificial spin ice architecture, energy-landscape variations can be realized. Firstly, an added interaction modifier is used to equilibrate the interactions between the mesospins at the vertex level, which can restore the degenerate ground state of the square spin ice model. Secondly, the removal of elements can lead to topologically frustrated spin systems, as not all building blocks can simultaneously be in their lowest energy state. Furthermore, the merging results in multiple element sizes in the mesospin system. As the magnetization reversal barrier is dependent on the element size, these mesospin systems have different energy barriers. The thermal ordering process in such a system differs from a single-size element system with its unique energy barrier. Using reciprocal space analysis tools like the magnetic spin structure factor we show that systems with multiple element sizes achieve a higher short-range order then their single-size element references. The magnetic order in mesoscopic spin systems could successfully be tailored by modifications of the lattice geometry.
  •  
8.
  • Östman, Erik (författare)
  • Collective properties of magnetic mesospins
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mesoscopic spin systems consist of an ensemble of lithographically patterned nanomagnetic elements - mesospins. The interactions between the mesospins, can be designed at will by altering their lateral arrangement, enabling the study of collective magnetic order in a wide range of systems.            The spin dimensionality of a mesospin is controlled by its shape and form. Thin elongated elements are Ising-like, with only two possible magnetization directions. Disc shaped elements can be single domain and behave XY-like, with a magnetization direction free to rotate in the plane of the disc. Larger disc sizes result in magnetic vortices. Tuning the material parameters of the elements enables mesospin dynamics at and below room temperature. Combining all of the above, the magnetic state of a lattice is then defined by the mesospins lateral arrangement, their spin dimensionality, and the temperature.            In this Thesis we investigate the magnetic order and dynamic properties in a series of different configurations, where the nano-magnetic elements are in the vortex state, Ising-like mesospins or of mixed mesospin dimensionality. Chains of Ising-mesospins were investigated and shown to be successfully described by the Ising model. A lossless transition between the magnetic vortex state and the collinear state, was found in square arrays of magnetic discs. In a more complicated interaction regime, square artificial spin ice, the dynamical range of the Ising-like mesospins in the lattice was probed, in terms of magnetization relaxation studies.            Utilizing the configurational freedom in mesoscopic spin systems, together with the possibility to alter the spin dimensionality of the elements, it is possible to create a lattice with no naturally occurring analogue. In such a lattice, where XY mesospins were added to square artificial spin ice, it was found that the degeneracy of the square ice model was restored. Furthermore, using a reciprocal space analysis tool, the magnetic spin structure factor, the system was shown to possess the characteristic features of a Coulomb spin liquid with strong local correlations and absence of long range order. Increasing the interaction between the elements, results in an emergent magnetic order on a large length-scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy