SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kar Siddhartha) "

Sökning: WFRF:(Kar Siddhartha)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunning, Alison M, et al. (författare)
  • Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.
  • 2016
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718.
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
  •  
2.
  • Kar, Siddhartha P, et al. (författare)
  • Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types
  • 2016
  • Ingår i: Cancer discovery. - 2159-8290. ; 6:9, s. 1052-1067
  • Tidskriftsartikel (refereegranskat)abstract
    • UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis.SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.
  •  
3.
  • Kar, Siddhartha P., et al. (författare)
  • The association between weight at birth and breast cancer risk revisited using Mendelian randomisation
  • 2019
  • Ingår i: European Journal of Epidemiology. - Springer. - 0393-2990. ; 34:6, s. 591-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies suggest that higher birth weight (BW) is associated with increased risk of breast cancer in adult life. We conducted a two-sample Mendelian randomisation (MR) study to assess whether this association is causal. Sixty independent single nucleotide polymorphisms (SNPs) known to be associated at P < 5 × 10 −8 with BW were used to construct (1) a 41-SNP instrumental variable (IV) for univariable MR after removing SNPs with pleiotropic associations with other breast cancer risk factors and (2) a 49-SNP IV for multivariable MR after filtering SNPs for data availability. BW predicted by the 41-SNP IV was not associated with overall breast cancer risk in inverse-variance weighted (IVW) univariable MR analysis of genetic association data from 122,977 breast cancer cases and 105,974 controls (odds ratio = 0.86 per 500 g higher BW; 95% confidence interval 0.73–1.01). Sensitivity analyses using four alternative methods and three alternative IVs, including an IV with 59 of the 60 BW-associated SNPs, yielded similar results. Multivariable MR adjusting for the effects of the 49-SNP IV on birth length, adult height, adult body mass index, age at menarche, and age at menopause using IVW and MR-Egger methods provided estimates consistent with univariable analyses. Results were also similar when all analyses were repeated after restricting to estrogen receptor-positive or -negative breast cancer cases. Point estimates of the odds ratios from most analyses performed indicated an inverse relationship between genetically-predicted BW and breast cancer, but we are unable to rule out an association between the non-genetically-determined component of BW and breast cancer. Thus, genetically-predicted higher BW was not associated with an increased risk of breast cancer in adult life in our MR study.
4.
  • Michailidou, Kyriaki, et al. (författare)
  • Association analysis identifies 65 new breast cancer risk loci
  • 2017
  • Ingår i: Nature. - 1476-4687. ; 551:7678, s. 92-
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
  •  
5.
  • Milne, Roger L, et al. (författare)
  • Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer
  • 2017
  • Ingår i: Nature genetics. - 1546-1718. ; 49:12, s. 1767-1778
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease1. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
  •  
6.
  • Phelan, Catherine M., et al. (författare)
  • Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer
  • 2017
  • Ingår i: Nature genetics. - 1546-1718. ; 49:5, s. 680-691
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
7.
  • Couch, Fergus J, et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10-8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
8.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P&amp;lt;5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P&amp;lt;0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.</p>
9.
  • Dunning, Alison M., et al. (författare)
  • Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170
  • 2016
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 48:4, s. 374-386
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor a) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER+ or ER-) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER-tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.</p>
  •  
10.
  • Feng, Helian, et al. (författare)
  • Cross-cancer cross-tissue Transcriptome-wide Association Study (TWAS) of 11 cancers identifies 56 novel genes
  • 2020
  • Ingår i: Genetic Epidemiology. - John Wiley & Sons. - 0741-0395 .- 1098-2272. ; 44:5, s. 481-481
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • <p>Though heterogeneous, multiple tumor types share hallmark mechanisms. Thus, identifying genes associated with multiple cancer types may shed light on general oncogenic mechanisms and identify genes missed in single‐cancer analyses. TWAS have been successful in testing whether genetically‐predicted tissue‐specific gene expression is associated with cancer risk. Although cross‐cancer genome‐wide association studies (GWAS) analyses have been performed previously, no cross‐cancer TWAS has been conducted to date. Here, we implement a pipeline to perform cross‐cancer, cross‐tissue TWAS analysis. We use newly‐developed multi‐trait TWAS test statistics to integrate the TWAS results for association between 11 separated cancers and predicted gene expression in 43 GTEx tissues, including a “sum” test and a “variance components” test, analogous to fixed‐ and random‐effects meta‐analyses. We then integrated the results across different tissues using the Aggregated Cauchy Association Test (ACAT) combined test.</p><p>A total of 403 genes were significantly associated with at least one cancer type for at least one tissue; 96 additional genes were identified when combining test results across cancers; and 35 additional genes when further combining test results across tissue. Among these significant genes, 70 were not near previously‐published GWAS index variants. 14 of the 70 novel genes were identified from the single‐cancer single‐tissue test; an additional 43 were identified with the cross‐cancer test; and another 13 were identified when further combined across tissues. The newly identified genes, including <em>RBBP8 </em>and <em>TP53BP </em>, are involved in chromatin structure, tumorigenesis, apoptosis, transcriptional regulation, DNA repair, immune system, oxidative damage and cell‐cycle, proliferation, progression, shape, structure, and migration.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy