SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kar Siddhartha) "

Sökning: WFRF:(Kar Siddhartha)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kar, Siddhartha P., et al. (författare)
  • Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types
  • 2016
  • Ingår i: ; 6:9, s. 1052-1067
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10 -8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. (C) 2016 AACR.
  •  
2.
  •  
3.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
4.
  • Dunning, Alison M, et al. (författare)
  • Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036.
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
  •  
5.
  • Kar, Siddhartha P., et al. (författare)
  • The association between weight at birth and breast cancer risk revisited using Mendelian randomisation
  • Ingår i: European Journal of Epidemiology. - : Springer. - 0393-2990 .- 1573-7284. ; 34:6, s. 591-600
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies suggest that higher birth weight (BW) is associated with increased risk of breast cancer in adult life. We conducted a two-sample Mendelian randomisation (MR) study to assess whether this association is causal. Sixty independent single nucleotide polymorphisms (SNPs) known to be associated at P < 5 × 10 −8 with BW were used to construct (1) a 41-SNP instrumental variable (IV) for univariable MR after removing SNPs with pleiotropic associations with other breast cancer risk factors and (2) a 49-SNP IV for multivariable MR after filtering SNPs for data availability. BW predicted by the 41-SNP IV was not associated with overall breast cancer risk in inverse-variance weighted (IVW) univariable MR analysis of genetic association data from 122,977 breast cancer cases and 105,974 controls (odds ratio = 0.86 per 500 g higher BW; 95% confidence interval 0.73–1.01). Sensitivity analyses using four alternative methods and three alternative IVs, including an IV with 59 of the 60 BW-associated SNPs, yielded similar results. Multivariable MR adjusting for the effects of the 49-SNP IV on birth length, adult height, adult body mass index, age at menarche, and age at menopause using IVW and MR-Egger methods provided estimates consistent with univariable analyses. Results were also similar when all analyses were repeated after restricting to estrogen receptor-positive or -negative breast cancer cases. Point estimates of the odds ratios from most analyses performed indicated an inverse relationship between genetically-predicted BW and breast cancer, but we are unable to rule out an association between the non-genetically-determined component of BW and breast cancer. Thus, genetically-predicted higher BW was not associated with an increased risk of breast cancer in adult life in our MR study.
  •  
6.
  • Larsson, Susanna C., et al. (författare)
  • Smoking, alcohol consumption, and cancer : A mendelian randomisation study in UK Biobank and international genetic consortia participants
  • 2020
  • Ingår i: ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSmoking is a well-established cause of lung cancer and there is strong evidence that smoking also increases the risk of several other cancers. Alcohol consumption has been inconsistently associated with cancer risk in observational studies. This mendelian randomisation (MR) study sought to investigate associations in support of a causal relationship between smoking and alcohol consumption and 19 site-specific cancers.Methods and findingsWe used summary-level data for genetic variants associated with smoking initiation (ever smoked regularly) and alcohol consumption, and the corresponding associations with lung, breast, ovarian, and prostate cancer from genome-wide association studies consortia, including participants of European ancestry. We additionally estimated genetic associations with 19 site-specific cancers among 367,643 individuals of European descent in UK Biobank who were 37 to 73 years of age when recruited from 2006 to 2010. Associations were considered statistically significant at a Bonferroni corrected p-value below 0.0013. Genetic predisposition to smoking initiation was associated with statistically significant higher odds of lung cancer in the International Lung Cancer Consortium (odds ratio [OR] 1.80; 95% confidence interval [CI] 1.59–2.03; p = 2.26 × 10−21) and UK Biobank (OR 2.26; 95% CI 1.92–2.65; p = 1.17 × 10−22). Additionally, genetic predisposition to smoking was associated with statistically significant higher odds of cancer of the oesophagus (OR 1.83; 95% CI 1.34–2.49; p = 1.31 × 10−4), cervix (OR 1.55; 95% CI 1.27–1.88; p = 1.24 × 10−5), and bladder (OR 1.40; 95% CI 1.92–2.65; p = 9.40 × 10−5) and with statistically nonsignificant higher odds of head and neck (OR 1.40; 95% CI 1.13–1.74; p = 0.002) and stomach cancer (OR 1.46; 95% CI 1.05–2.03; p = 0.024). In contrast, there was an inverse association between genetic predisposition to smoking and prostate cancer in the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium (OR 0.90; 95% CI 0.83–0.98; p = 0.011) and in UK Biobank (OR 0.90; 95% CI 0.80–1.02; p = 0.104), but the associations did not reach statistical significance. We found no statistically significant association between genetically predicted alcohol consumption and overall cancer (n = 75,037 cases; OR 0.95; 95% CI 0.84–1.07; p = 0.376). Genetically predicted alcohol consumption was statistically significantly associated with lung cancer in the International Lung Cancer Consortium (OR 1.94; 95% CI 1.41–2.68; p = 4.68 × 10−5) but not in UK Biobank (OR 1.12; 95% CI 0.65–1.93; p = 0.686). There was no statistically significant association between alcohol consumption and any other site-specific cancer. The main limitation of this study is that precision was low in some analyses, particularly for analyses of alcohol consumption and site-specific cancers.ConclusionsOur findings support the well-established relationship between smoking and lung cancer and suggest that smoking may also be a risk factor for cancer of the head and neck, oesophagus, stomach, cervix, and bladder. We found no evidence supporting a relationship between alcohol consumption and overall or site-specific cancer risk.
  •  
7.
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • Michailidou, Kyriaki, et al. (författare)
  • Association analysis identifies 65 new breast cancer risk loci.
  • 2017
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 551:7678, s. 92-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.
  •  
9.
  •  
10.
  • Yang, Yaohua, et al. (författare)
  • Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk
  • 2019
  • Ingår i: ; 79:3, s. 505-517
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 x 10(-7). Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy